Suppr超能文献

通过最大化互信息进行多模态图像配准。

Multimodality image registration by maximization of mutual information.

作者信息

Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P

机构信息

Laboratory for Medical Imaging Research, Katholieke Universiteit Leuven, Universitair Ziekenhuis Gasthuisberg, Belgium.

出版信息

IEEE Trans Med Imaging. 1997 Apr;16(2):187-98. doi: 10.1109/42.563664.

Abstract

A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or information redundancy between the image intensities of corresponding voxels in both images, which is assumed to be maximal if the images are geometrically aligned. Maximization of MI is a very general and powerful criterion, because no assumptions are made regarding the nature of this dependence and no limiting constraints are imposed on the image content of the modalities involved. The accuracy of the MI criterion is validated for rigid body registration of computed tomography (CT), magnetic resonance (MR), and photon emission tomography (PET) images by comparison with the stereotactic registration solution, while robustness is evaluated with respect to implementation issues, such as interpolation and optimization, and image content, including partial overlap and image degradation. Our results demonstrate that subvoxel accuracy with respect to the stereotactic reference solution can be achieved completely automatically and without any prior segmentation, feature extraction, or other preprocessing steps which makes this method very well suited for clinical applications.

摘要

提出了一种解决多模态医学图像配准问题的新方法,该方法使用信息论中的一个基本概念——互信息(MI)或相对熵,作为一种新的匹配准则。本文提出的方法应用互信息来测量两幅图像中对应体素的图像强度之间的统计依赖性或信息冗余,假设如果图像在几何上对齐,这种依赖性或冗余将达到最大。互信息最大化是一个非常通用且强大的准则,因为对于这种依赖性的性质不做任何假设,并且对所涉及模态的图像内容也不施加任何限制约束。通过与立体定向配准解决方案进行比较,验证了互信息准则在计算机断层扫描(CT)、磁共振(MR)和正电子发射断层扫描(PET)图像刚体配准中的准确性,同时针对诸如插值和优化等实现问题以及包括部分重叠和图像退化在内的图像内容评估了其鲁棒性。我们的结果表明,相对于立体定向参考解决方案,可以完全自动地实现亚体素精度,且无需任何预先分割、特征提取或其他预处理步骤,这使得该方法非常适合临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验