Suppr超能文献

一个基于网络的水稻转录因子功能预测工具。

A web-based tool for the prediction of rice transcription factor function.

机构信息

Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea.

China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China.

出版信息

Database (Oxford). 2019 Jan 1;2019. doi: 10.1093/database/baz061.

Abstract

Transcription factors (TFs) are an important class of regulatory molecules. Despite their importance, only a small number of genes encoding TFs have been characterized in Oryza sativa (rice), often because gene duplication and functional redundancy complicate their analysis. To address this challenge, we developed a web-based tool called the Rice Transcription Factor Phylogenomics Database (RTFDB) and demonstrate its application for predicting TF function. The RTFDB hosts transcriptome and co-expression analyses. Sources include high-throughput data from oligonucleotide microarray (Affymetrix and Agilent) as well as RNA-Seq-based expression profiles. We used the RTFDB to identify tissue-specific and stress-related gene expression. Subsequently, 273 genes preferentially expressed in specific tissues or organs, 455 genes showing a differential expression pattern in response to 4 abiotic stresses, 179 genes responsive to infection of various pathogens and 512 genes showing differential accumulation in response to various hormone treatments were identified through the meta-expression analysis. Pairwise Pearson correlation coefficient analysis between paralogous genes in a phylogenetic tree was used to assess their expression collinearity and thereby provides a hint on their genetic redundancy. Integrating transcriptome with the gene evolutionary information reveals the possible functional redundancy or dominance played by paralog genes in a highly duplicated genome such as rice. With this method, we estimated a predominant role for 83.3% (65/78) of the TF or transcriptional regulator genes that had been characterized via loss-of-function studies. In this regard, the proposed method is applicable for functional studies of other plant species with annotated genome.

摘要

转录因子(TFs)是一类重要的调控分子。尽管它们很重要,但在水稻(Oryza sativa)中,只有少数编码 TFs 的基因被鉴定出来,这通常是因为基因复制和功能冗余使它们的分析变得复杂。为了解决这个挑战,我们开发了一个名为 Rice Transcription Factor Phylogenomics Database(RTFDB)的基于网络的工具,并展示了它在预测 TF 功能方面的应用。RTFDB 提供了转录组和共表达分析。其来源包括寡核苷酸微阵列(Affymetrix 和 Agilent)的高通量数据以及基于 RNA-Seq 的表达谱。我们使用 RTFDB 来鉴定组织特异性和应激相关的基因表达。随后,通过元表达分析,鉴定出了 273 个在特定组织或器官中优先表达的基因、455 个对 4 种非生物胁迫表现出差异表达模式的基因、179 个对各种病原体感染有反应的基因和 512 个对各种激素处理表现出差异积累的基因。通过对系统发育树中旁系同源基因之间的成对 Pearson 相关系数分析,评估它们的表达共线性,从而提示它们的遗传冗余。将转录组与基因进化信息整合,可以揭示在高度重复的基因组(如水稻)中,旁系同源基因的可能功能冗余或优势。通过这种方法,我们估计了通过功能丧失研究已经鉴定出来的 78 个 TF 或转录调控因子基因中的 83.3%(65/78)起主要作用。在这方面,该方法适用于具有注释基因组的其他植物物种的功能研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd7e/6553503/cc0163376023/baz061f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验