Suppr超能文献

自牺牲标签辅助电化学生物传感界面用于超灵敏电化学免疫传感器。

Self-sacrificial label assisted electroactivity conversion of sensing interface for ultrasensitive electrochemical immunosensor.

机构信息

Department of Chemistry, Capital Normal University, Beijing, 100048, China.

Department of Chemistry, Capital Normal University, Beijing, 100048, China.

出版信息

Biosens Bioelectron. 2019 Sep 1;140:111355. doi: 10.1016/j.bios.2019.111355. Epub 2019 May 30.

Abstract

Sensitivity amplification strategies in electrochemical immunoassays are mainly limited by redox signal leaking, degradation of catalytic activity caused by layers of decoration and the large hindrance effect caused by immunoprobes. Herein, we developed an innovative sensitivity amplification strategy based on the self-sacrificial label-assisted electroactivity conversion of a sensing interface, utilizing Fe-loaded polydopamine (Fe-PDA) nanoparticles as the self-sacrificial labels, which can be decomposed under acidic conditions and release Fe. When the assembled sensing interface was immersed in a prussian blue (PB) precursor solution (a mixed solution of 0.1 M KCl, 0.1M HCl and 1 mM KFe(CN)), the as-formed sandwich-type structure was destroyed due to the decomposition of Fe-PDA caused by HCl in PB precursor solution, resulting in the reduce of interface resistance. The released Fe reacted with the PB precursor solution and triggered the growth of electroactive PB nanoparticles (PB NPs) on the sensing interface. Assisted by self-sacrificial Fe-PDA, the sensing interface was converted from electrochemically inactive to electroactive with a strong redox signal, high catalytic activity, and decreased interface resistance. The PB NPs can catalyse HO to amplify the redox signal, thus improving sensitivity. The redox signal and catalysts were generated in the final assembly step, which can avoid signal leaking and decreases of catalytic activity caused by layers of decoration. The decomposition of Fe-PDA can eliminate the large hindrance effect of the immunoprobe. Ultrasensitive quantification of carbohydrate antigen 125 (CA 125) was realized with a detection range from 0.00001 to 1000 U mL and detection limit of 0.25 × 10 U mL.

摘要

电化学免疫分析中的灵敏度放大策略主要受到以下因素的限制

氧化还原信号泄露、多层修饰导致的催化活性降低以及免疫探针引起的大阻碍效应。在此,我们开发了一种基于传感界面的自牺牲标记辅助电活性转换的创新灵敏度放大策略,利用负载铁的聚多巴胺(Fe-PDA)纳米粒子作为自牺牲标记,这些标记在酸性条件下可分解并释放出铁。当组装好的传感界面浸入普鲁士蓝(PB)前体溶液(0.1 M KCl、0.1 M HCl 和 1 mM KFe(CN) 的混合溶液)中时,由于 PB 前体溶液中的 HCl 导致 Fe-PDA 分解,三明治结构被破坏,从而导致界面电阻降低。释放出的铁与 PB 前体溶液反应,并在传感界面上引发电活性 PB 纳米粒子(PB NPs)的生长。在自牺牲 Fe-PDA 的辅助下,传感界面从电化学惰性转变为电活性,具有强氧化还原信号、高催化活性和较低的界面电阻。PB NPs 可以催化 HO 来放大氧化还原信号,从而提高灵敏度。氧化还原信号和催化剂是在最终组装步骤中生成的,这可以避免由于多层修饰而导致的信号泄露和催化活性降低。Fe-PDA 的分解可以消除免疫探针引起的大阻碍效应。通过该策略可以实现对糖类抗原 125(CA 125)的超灵敏定量,检测范围为 0.00001 至 1000 U mL,检测限为 0.25×10 U mL。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验