Suppr超能文献

后脑糖调节机制:腹外侧髓质儿茶酚胺神经元的关键作用。

Hindbrain glucoregulatory mechanisms: Critical role of catecholamine neurons in the ventrolateral medulla.

机构信息

Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America.

Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America.

出版信息

Physiol Behav. 2019 Sep 1;208:112568. doi: 10.1016/j.physbeh.2019.112568. Epub 2019 Jun 5.

Abstract

Glucose is the required metabolic substrate for the brain. Yet the brain stores very little glucose. Therefore, the brain continuously monitors glucose availability to detect hypoglycemia and to mobilize system-wide responses to protect and restore euglycemia. Catecholamine (CA) neurons in the hindbrain are critical elements of the brain's glucoregulatory mechanisms. They project widely throughout the brain and spinal cord, innervating sites controlling behavioral, endocrine and visceral responses. Hence, CA neurons are capable of triggering a rapid, coordinated and multifaceted response to glucose challenge. This article reviews experimental data that has begun to elucidate the importance of CA neurons for glucoregulation, the functions of specific CA subpopulations in the ventrolateral medulla, and the extended circuitry through which they engage other levels of the nervous system to accomplish their essential glucoregulatory task. Hopefully, this review also suggests the vast amount of work yet to be done in this area and the justification for engaging in that effort.

摘要

葡萄糖是大脑所需的代谢底物。然而,大脑储存的葡萄糖非常少。因此,大脑不断监测葡萄糖的供应情况,以检测低血糖并调动全身性反应来保护和恢复血糖正常。后脑的儿茶酚胺(CA)神经元是大脑糖调节机制的关键组成部分。它们广泛投射到大脑和脊髓中,支配着控制行为、内分泌和内脏反应的部位。因此,CA 神经元能够触发对葡萄糖挑战的快速、协调和多方面的反应。本文综述了一些实验数据,这些数据开始阐明 CA 神经元在糖调节中的重要性、腹外侧髓质中特定 CA 亚群的功能,以及它们通过哪些扩展回路与神经系统的其他水平相互作用来完成其基本的糖调节任务。希望这篇综述也能说明在这个领域还有大量的工作要做,以及进行这项工作的理由。

相似文献

1
Hindbrain glucoregulatory mechanisms: Critical role of catecholamine neurons in the ventrolateral medulla.
Physiol Behav. 2019 Sep 1;208:112568. doi: 10.1016/j.physbeh.2019.112568. Epub 2019 Jun 5.
3
Hindbrain catecholamine neurons control multiple glucoregulatory responses.
Physiol Behav. 2006 Nov 30;89(4):490-500. doi: 10.1016/j.physbeh.2006.05.036. Epub 2006 Aug 1.
5
Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.
Endocrinology. 2015 Aug;156(8):2807-20. doi: 10.1210/en.2015-1138. Epub 2015 May 15.
7
A ventrolateral medulla-midline thalamic circuit for hypoglycemic feeding.
Nat Commun. 2020 Dec 4;11(1):6218. doi: 10.1038/s41467-020-19980-7.
8
Response of catecholaminergic neurons in the mouse hindbrain to glucoprivic stimuli is astrocyte dependent.
Am J Physiol Regul Integr Comp Physiol. 2018 Jul 1;315(1):R153-R164. doi: 10.1152/ajpregu.00368.2017. Epub 2018 Mar 28.
9
Stimulation of feeding by three different glucose-sensing mechanisms requires hindbrain catecholamine neurons.
Am J Physiol Regul Integr Comp Physiol. 2014 Feb 15;306(4):R257-64. doi: 10.1152/ajpregu.00451.2013. Epub 2013 Dec 31.

引用本文的文献

1
Paraventricular nucleus-Medullary interactions: How they help enable endocrine responses to metabolic stress.
Curr Opin Endocr Metab Res. 2022 Dec;27. doi: 10.1016/j.coemr.2022.100401. Epub 2022 Aug 18.
2
Cortical-brainstem circuitry attenuates physiological stress reactivity.
J Physiol. 2024 Mar;602(5):949-966. doi: 10.1113/JP285627. Epub 2024 Feb 14.
3
Adrenergic modulation of melanocortin pathway by hunger signals.
Nat Commun. 2023 Oct 19;14(1):6602. doi: 10.1038/s41467-023-42362-8.
6
The physiological control of eating: signals, neurons, and networks.
Physiol Rev. 2022 Apr 1;102(2):689-813. doi: 10.1152/physrev.00028.2020. Epub 2021 Sep 6.
8
A ventrolateral medulla-midline thalamic circuit for hypoglycemic feeding.
Nat Commun. 2020 Dec 4;11(1):6218. doi: 10.1038/s41467-020-19980-7.
9
Astrocytes in the nucleus of the solitary tract: Contributions to neural circuits controlling physiology.
Physiol Behav. 2020 Sep 1;223:112982. doi: 10.1016/j.physbeh.2020.112982. Epub 2020 Jun 11.
10
NTS Catecholamine Neurons Mediate Hypoglycemic Hunger via Medial Hypothalamic Feeding Pathways.
Cell Metab. 2020 Feb 4;31(2):313-326.e5. doi: 10.1016/j.cmet.2019.11.016. Epub 2019 Dec 12.

本文引用的文献

1
Hindbrain astrocytes and glucose counter-regulation.
Physiol Behav. 2019 May 15;204:140-150. doi: 10.1016/j.physbeh.2019.02.025. Epub 2019 Feb 21.
2
Activation of µ-opioid receptors in the rostral ventrolateral medulla blocks the sympathetic counterregulatory response to glucoprivation.
Am J Physiol Regul Integr Comp Physiol. 2018 Dec 1;315(6):R1115-R1122. doi: 10.1152/ajpregu.00248.2018. Epub 2018 Oct 3.
3
Orexin/hypocretin and dysregulated eating: Promotion of foraging behavior.
Brain Res. 2020 Mar 15;1731:145915. doi: 10.1016/j.brainres.2018.08.018. Epub 2018 Aug 17.
4
Activation of catecholamine neurons in the ventral medulla reduces CCK-induced hypophagia and c-Fos activation in dorsal medullary catecholamine neurons.
Am J Physiol Regul Integr Comp Physiol. 2018 Sep 1;315(3):R442-R452. doi: 10.1152/ajpregu.00107.2018. Epub 2018 Jun 6.
5
Response of catecholaminergic neurons in the mouse hindbrain to glucoprivic stimuli is astrocyte dependent.
Am J Physiol Regul Integr Comp Physiol. 2018 Jul 1;315(1):R153-R164. doi: 10.1152/ajpregu.00368.2017. Epub 2018 Mar 28.
6
Catecholaminergic projections into an interconnected forebrain network control the sensitivity of male rats to diet-induced obesity.
Am J Physiol Regul Integr Comp Physiol. 2018 Jun 1;314(6):R811-R823. doi: 10.1152/ajpregu.00423.2017. Epub 2018 Jan 31.
8
High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs.
Am J Physiol Regul Integr Comp Physiol. 2017 Sep 1;313(3):R229-R239. doi: 10.1152/ajpregu.00413.2016. Epub 2017 Jun 14.
9
Dorsomedial hypothalamic NPY affects cholecystokinin-induced satiety via modulation of brain stem catecholamine neuronal signaling.
Am J Physiol Regul Integr Comp Physiol. 2016 Nov 1;311(5):R930-R939. doi: 10.1152/ajpregu.00184.2015. Epub 2016 Aug 17.
10
Deletion of GPR40 fatty acid receptor gene in mice blocks mercaptoacetate-induced feeding.
Am J Physiol Regul Integr Comp Physiol. 2016 May 15;310(10):R968-74. doi: 10.1152/ajpregu.00548.2015. Epub 2016 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验