Suppr超能文献

高血糖通过增加自发性谷氨酸能输入,增强孤束核中儿茶酚胺能神经元的动作电位发放。

High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs.

作者信息

Roberts Brandon L, Zhu Mingyan, Zhao Huan, Dillon Crystal, Appleyard Suzanne M

机构信息

Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington.

Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington

出版信息

Am J Physiol Regul Integr Comp Physiol. 2017 Sep 1;313(3):R229-R239. doi: 10.1152/ajpregu.00413.2016. Epub 2017 Jun 14.

Abstract

Glucose is a crucial substrate essential for cell survival and function. Changes in glucose levels impact neuronal activity and glucose deprivation increases feeding. Several brain regions have been shown to respond to glucoprivation, including the nucleus of the solitary tract (NTS) in the brain stem. The NTS is the primary site in the brain that receives visceral afferent information from the gastrointestinal tract. The catecholaminergic (CA) subpopulation within the NTS modulates many homeostatic functions including cardiovascular reflexes, respiration, food intake, arousal, and stress. However, it is not known if they respond to changes in glucose. Here we determined whether NTS-CA neurons respond to changes in glucose concentration and the mechanism involved. We found that decreasing glucose concentrations from 5 mM to 2 mM to 1 mM, significantly decreased action potential firing in a cell-attached preparation, whereas increasing it back to 5 mM increased the firing rate. This effect was dependent on glutamate release from afferent terminals and required presynaptic 5-HTRs. Decreasing the glucose concentration also decreased both basal and 5-HTR agonist-induced increase in the frequency of spontaneous glutamate inputs onto NTS-CA neurons. Low glucose also blunted 5-HT-induced inward currents in nodose ganglia neurons, which are the cell bodies of vagal afferents. The effect of low glucose in both nodose ganglia cells and in NTS slices was mimicked by the glucokinase inhibitor glucosamine. This study suggests that NTS-CA neurons are glucosensing through a presynaptic mechanism that is dependent on vagal glutamate release, 5-HTR activity, and glucokinase.

摘要

葡萄糖是细胞存活和功能所必需的关键底物。葡萄糖水平的变化会影响神经元活动,而葡萄糖剥夺会增加进食。已有研究表明,包括脑干孤束核(NTS)在内的几个脑区会对葡萄糖缺乏作出反应。NTS是大脑中接收来自胃肠道内脏传入信息的主要部位。NTS内的儿茶酚胺能(CA)亚群调节许多稳态功能,包括心血管反射、呼吸、食物摄入、觉醒和应激。然而,尚不清楚它们是否对葡萄糖变化作出反应。在此,我们确定了NTS-CA神经元是否对葡萄糖浓度变化作出反应以及其中涉及的机制。我们发现,将葡萄糖浓度从5 mM降至2 mM再降至1 mM,在细胞贴附式记录中显著降低了动作电位发放频率,而将其恢复至5 mM则增加了发放频率。这种效应依赖于传入终末释放谷氨酸,且需要突触前5-羟色胺受体(5-HTRs)。降低葡萄糖浓度还降低了基础状态下以及5-HTR激动剂诱导的NTS-CA神经元自发谷氨酸输入频率的增加。低血糖还减弱了5-羟色胺(5-HT)诱导的结状神经节神经元内向电流,结状神经节神经元是迷走神经传入纤维的胞体。葡萄糖激酶抑制剂氨基葡萄糖模拟了低血糖对结状神经节细胞和NTS脑片的影响。这项研究表明,NTS-CA神经元通过一种依赖于迷走神经谷氨酸释放、5-HTR活性和葡萄糖激酶的突触前机制来感知葡萄糖。

相似文献

3
Effects of acute and chronic nicotine on catecholamine neurons of the nucleus of the solitary tract.急性和慢性尼古丁对孤束核儿茶酚胺神经元的影响。
Am J Physiol Regul Integr Comp Physiol. 2019 Jan 1;316(1):R38-R49. doi: 10.1152/ajpregu.00344.2017. Epub 2018 Oct 24.

引用本文的文献

8
The physiological control of eating: signals, neurons, and networks.进食的生理控制:信号、神经元和网络。
Physiol Rev. 2022 Apr 1;102(2):689-813. doi: 10.1152/physrev.00028.2020. Epub 2021 Sep 6.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验