Suppr超能文献

利用牛津纳米孔技术解决 MiSeq 生成的 HLA-DPB1 分型歧义。

Resolving MiSeq-Generated Ambiguities in HLA-DPB1 Typing by Using the Oxford Nanopore Technology.

机构信息

Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.

Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Departments of Dermatology and Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

J Mol Diagn. 2019 Sep;21(5):852-861. doi: 10.1016/j.jmoldx.2019.04.009. Epub 2019 Jun 4.

Abstract

The technical limitations of current next-generation sequencing technologies, combined with an ever-increasing number of human leukocyte antigen (HLA) alleles, form the basis for the additional ambiguities encountered at an increasing rate in clinical practice. HLA-DPB1 characterization, particularly, generates a significant percentage of ambiguities (25.5%), posing a challenge for accurate and unambiguous HLA-DPB1 genotyping. Phasing of exonic heterozygous positions between exon 2 and all other downstream exons has been the major cause of ambiguities. In this study, the Oxford Nanopore MinION, a third-generation sequencing technology, was used to resolve the phasing. The accurate MiSeq sequencing data, combined with the long reads obtained from the MinION platform, allow for the resolution of the tested ambiguities.

摘要

当前下一代测序技术的技术限制,加上人类白细胞抗原(HLA)等位基因数量的不断增加,是临床实践中越来越多遇到的额外歧义的基础。特别是 HLA-DPB1 特征描述,会产生大量的歧义(25.5%),对 HLA-DPB1 基因分型的准确性和明确性构成挑战。外显子 2 和所有其他下游外显子之间的异质位置的相位是造成歧义的主要原因。在这项研究中,第三代测序技术 Oxford Nanopore MinION 被用于解决相位问题。准确的 MiSeq 测序数据,加上从 MinION 平台获得的长读段,使得所测试的歧义得以解决。

相似文献

1
Resolving MiSeq-Generated Ambiguities in HLA-DPB1 Typing by Using the Oxford Nanopore Technology.
J Mol Diagn. 2019 Sep;21(5):852-861. doi: 10.1016/j.jmoldx.2019.04.009. Epub 2019 Jun 4.
2
Long-Read Nanopore Sequencing Validated for Human Leukocyte Antigen Class I Typing in Routine Diagnostics.
J Mol Diagn. 2020 Jul;22(7):912-919. doi: 10.1016/j.jmoldx.2020.04.001. Epub 2020 Apr 14.
3
Next generation sequencing to determine HLA class II genotypes in a cohort of hematopoietic cell transplant patients and donors.
Hum Immunol. 2014 Oct;75(10):1040-6. doi: 10.1016/j.humimm.2014.08.206. Epub 2014 Aug 27.
6
[Sequence analysis and identification of a novel HLA-DPB1*02:01:69 allele by third-generation sequencing].
Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2024 Oct 10;41(10):1176-1181. doi: 10.3760/cma.j.cn511374-20240329-00201.
7
Resequencing of four novel alleles with nanopore technology.
HLA. 2018 Oct;92(4):233-234. doi: 10.1111/tan.13360. Epub 2018 Sep 4.
8
Identification of a novel HLA-DPB1, HLA-DPB1*687:01, in an Italian renal transplant candidate.
HLA. 2019 Jul;94(1):89-90. doi: 10.1111/tan.13538. Epub 2019 Apr 10.
10
High-resolution HLA typing by long reads from the R10.3 Oxford nanopore flow cells.
Hum Immunol. 2021 Apr;82(4):288-295. doi: 10.1016/j.humimm.2021.02.005. Epub 2021 Feb 19.

引用本文的文献

1
A walk through the development of human leukocyte antigen typing: from serologic techniques to next-generation sequencing.
Clin Transplant Res. 2024 Dec 31;38(4):294-308. doi: 10.4285/ctr.24.0055. Epub 2024 Dec 11.
3
Enhancing Molecular Testing for Effective Delivery of Actionable Gene Diagnostics.
Bioengineering (Basel). 2022 Dec 1;9(12):745. doi: 10.3390/bioengineering9120745.
4
Nanopore sequencing technology, bioinformatics and applications.
Nat Biotechnol. 2021 Nov;39(11):1348-1365. doi: 10.1038/s41587-021-01108-x. Epub 2021 Nov 8.
8
Next-Generation Sequencing Technologies in Blood Group Typing.
Transfus Med Hemother. 2020 Feb;47(1):4-13. doi: 10.1159/000504765. Epub 2019 Dec 11.
9
PIRCHE-II: an algorithm to predict indirectly recognizable HLA epitopes in solid organ transplantation.
Immunogenetics. 2020 Feb;72(1-2):119-129. doi: 10.1007/s00251-019-01140-x. Epub 2019 Nov 18.

本文引用的文献

1
Direct HLA Genetic Comparisons Identify Highly Matched Unrelated Donor-Recipient Pairs with Improved Transplantation Outcome.
Biol Blood Marrow Transplant. 2019 May;25(5):921-931. doi: 10.1016/j.bbmt.2018.12.006. Epub 2018 Dec 8.
2
Hybrid correction of highly noisy long reads using a variable-order de Bruijn graph.
Bioinformatics. 2018 Dec 15;34(24):4213-4222. doi: 10.1093/bioinformatics/bty521.
3
Patterns of non-ARD variation in more than 300 full-length HLA-DPB1 alleles.
Hum Immunol. 2019 Jan;80(1):44-52. doi: 10.1016/j.humimm.2018.05.006. Epub 2018 Jun 4.
4
Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics. 2018 Sep 15;34(18):3094-3100. doi: 10.1093/bioinformatics/bty191.
6
FMLRC: Hybrid long read error correction using an FM-index.
BMC Bioinformatics. 2018 Feb 9;19(1):50. doi: 10.1186/s12859-018-2051-3.
7
Evolutionary basis of HLA-DPB1 alleles affects acute GVHD in unrelated donor stem cell transplantation.
Blood. 2018 Feb 15;131(7):808-817. doi: 10.1182/blood-2017-08-801449. Epub 2017 Dec 15.
8
Predicting an HLA-DPB1 expression marker based on standard DPB1 genotyping: Linkage analysis of over 32,000 samples.
Hum Immunol. 2018 Jan;79(1):20-27. doi: 10.1016/j.humimm.2017.11.001. Epub 2017 Nov 7.
9
MinION Analysis and Reference Consortium: Phase 2 data release and analysis of R9.0 chemistry.
F1000Res. 2017 May 31;6:760. doi: 10.12688/f1000research.11354.1. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验