MITOLAB, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France.
Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, Angers, France.
Hum Reprod. 2019 Jul 8;34(7):1313-1324. doi: 10.1093/humrep/dez054.
Does ageing affect the kinetics of the mitochondrial pool during oogenesis and early embryogenesis?
While we found no age-related change during oogenesis, the kinetics of mitochondrial DNA content and the expression of the factors involved in mitochondrial biogenesis appeared to be significantly altered during embryogenesis.
Oocyte mitochondria are necessary for embryonic development. The morphological and functional alterations of mitochondria, as well as the qualitative and quantitative mtDNA anomalies, observed during ovarian ageing may be responsible for the alteration of oocyte competence and embryonic development.
STUDY DESIGN, SIZE, DURATION: The study, conducted from November 2016 to November 2017, used 40 mice aged 5-8 weeks and 45 mice aged 9-11 months (C57Bl6/CBA F(1)). A total of 488 immature oocytes, with a diameter ranging from 20 μm to more than 80 μm, were collected from ovaries, and 1088 mature oocytes or embryos at different developmental stages (two PN, one-cell, i.e. syngamy, two-cell, four-cell, eight-cell, morula and blastocyst) were obtained after ovarian stimulation and, for embryos, mating.
PARTICIPANTS/MATERIALS, SETTING, METHODS: Mitochondrial DNA was quantified by quantitative PCR. We used quantitative reverse transcriptase PCR (RT-PCR) (microfluidic method) to study the relative expression of three genes involved in the key steps of embryogenesis, i.e. embryonic genome activation (HSPA1) and differentiation (CDX2 and NANOG), two mtDNA genes (CYB and ND2) and five genes essential for mitochondrial biogenesis (PPARGC1A, NRF1, POLG, TFAM and PRKAA). The statistical analysis was based on mixed linear regression models applying a logistic link function (STATA v13.1 software), with values of P < 0.05 being considered significant.
During oogenesis, there was a significant increase in oocyte mtDNA content (P < 0.0001) without any difference between the two groups of mice (P = 0.73). During the first phase of embryogenesis, i.e. up to the two-cell stage, embryonic mtDNA decreased significantly in the aged mice (P < 0.0001), whereas it was stable for young mice (young/old difference P = 0.015). The second phase of embryogenesis, i.e. between the two-cell and eight-cell stages, was characterized by a decrease in embryonic mtDNA for young mice (P = 0.013) only (young/old difference P = 0.038). During the third phase, i.e. between the eight-cell and blastocyst stage, there was a significant increase in embryonic mtDNA content in young mice (P < 0.0001) but not found in aged mice (young/old difference P = 0.002). We also noted a faster expression of CDX2 and NANOG in the aged mice than in the young mice during the second (P = 0.007 and P = 0.02, respectively) and the third phase (P = 0.01 and P = 0.008, respectively) of embryogenesis. The expression of mitochondrial genes CYB and ND2 followed similar kinetics and was equivalent for both groups of mice, with a significant increase during the third phase (P < 0.01). Of the five genes involved in mitochondrial biogenesis, i.e. PPARGC1A, NRF1, POLG, TFAM and PRKAA, the expression of three genes decreased significantly during the first phase only in young mice (NRF1, P = 0.018; POLGA, P = 0.002; PRKAA, P = 0.010), with no subsequent difference compared to old mice. In conclusion, during early embryogenesis in the old mice, we suspect that the lack of a replicatory burst before the two-cell stage, associated with the early arrival at the minimum threshold value of mtDNA, together with the absence of an increase of mtDNA during the last phase, might potentially deregulate the key stages of early embryogenesis.
N/A.
LIMITATIONS, REASONS FOR CAUTION: Because of the ethical impossibility of working on a human, this study was conducted only on a murine model. As superovulation was used, we cannot totally exclude that the differences observed were, at least partially, influenced by differences in ovarian response between young and old mice.
Our findings suggest a pathophysiological explanation for the link observed between mitochondria and the deterioration of oocyte quality and early embryonic development with age.
STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the University of Angers, France, by the French national research centres INSERM and the CNRS and, in part, by PHASE Division, INRA. There are no competing interests.
衰老是否会影响卵母细胞发生和早期胚胎发生过程中线粒体池的动力学?
虽然我们在卵母细胞发生过程中没有发现与年龄相关的变化,但线粒体 DNA 含量的动力学以及参与线粒体生物发生的因子的表达似乎在胚胎发生过程中发生了显著改变。
卵母细胞中的线粒体对于胚胎发育是必要的。在卵巢老化过程中观察到的线粒体的形态和功能改变,以及线粒体 DNA 的定性和定量异常,可能是导致卵母细胞能力和胚胎发育改变的原因。
研究设计、规模、持续时间:这项研究于 2016 年 11 月至 2017 年 11 月进行,使用了 40 只 5-8 周龄和 45 只 9-11 月龄(C57Bl6/CBA F(1))的小鼠。从卵巢中收集了 488 个直径在 20 μm至 80 μm 以上的未成熟卵母细胞,并且在卵巢刺激和胚胎发生后,即两个原核(PN)、一个细胞(syngamy)、两个细胞、四个细胞、八个细胞、桑椹胚和囊胚,获得了 1088 个成熟卵母细胞或胚胎。
参与者/材料、设置、方法:通过定量 PCR 定量线粒体 DNA。我们使用定量逆转录 PCR(RT-PCR)(微流控方法)研究了参与胚胎发生关键步骤的三个基因的相对表达,即胚胎基因组激活(HSPA1)和分化(CDX2 和 NANOG)、两个 mtDNA 基因(CYB 和 ND2)和五个对线粒体生物发生至关重要的基因(PPARGC1A、NRF1、POLG、TFAM 和 PRKAA)。统计分析基于混合线性回归模型,应用逻辑回归函数(STATA v13.1 软件),P 值小于 0.05 被认为具有统计学意义。
在卵母细胞发生过程中,卵母细胞 mtDNA 含量显著增加(P<0.0001),但两组小鼠之间没有差异(P=0.73)。在早期胚胎发生的第一阶段,即直到两细胞阶段,老年小鼠的胚胎 mtDNA 显著减少(P<0.0001),而年轻小鼠的 mtDNA 则保持稳定(年轻/老年差异 P=0.015)。第二阶段,即两细胞和八细胞阶段之间,年轻小鼠的胚胎 mtDNA 减少(P=0.013),而老年小鼠没有(年轻/老年差异 P=0.038)。在第三阶段,即八细胞和囊胚阶段之间,年轻小鼠的胚胎 mtDNA 含量显著增加(P<0.0001),但老年小鼠没有(年轻/老年差异 P=0.002)。我们还注意到,在第二阶段(P=0.007 和 P=0.02,分别)和第三阶段(P=0.01 和 P=0.008,分别)的胚胎发生过程中,老年小鼠的 CDX2 和 NANOG 表达比年轻小鼠更快。线粒体基因 CYB 和 ND2 的表达也遵循类似的动力学,两组小鼠的表达相同,在第三阶段(P<0.01)显著增加。参与线粒体生物发生的五个基因(PPARGC1A、NRF1、POLG、TFAM 和 PRKAA)中,有三个基因在年轻小鼠的第一阶段(NRF1,P=0.018;POLGA,P=0.002;PRKAA,P=0.010)显著减少,与老年小鼠相比,随后没有差异。总之,在老年小鼠的早期胚胎发生过程中,我们怀疑在两细胞阶段之前缺乏复制爆发,以及 mtDNA 提前达到最小阈值值,再加上在最后阶段 mtDNA 没有增加,可能潜在地扰乱了早期胚胎发生的关键阶段。
无。
局限性、谨慎的原因:由于在人类身上进行伦理上不可能进行研究,因此该研究仅在鼠模型上进行。由于使用了超排卵,我们不能完全排除观察到的差异至少部分受到年轻和老年小鼠卵巢反应差异的影响。
我们的研究结果为线粒体与卵母细胞质量和早期胚胎发育随年龄恶化之间的联系提供了一种病理生理学解释。
研究资金/竞争利益:这项工作得到了法国昂热大学、法国国家研究中心 INSERM 和 CNRS 的支持,部分得到了 PHASE Division,INRA 的支持。没有竞争利益。