Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran.
ISA Trans. 2019 Nov;94:108-118. doi: 10.1016/j.isatra.2019.04.016. Epub 2019 May 6.
This paper presents an efficient numerical method to solve fractional infinite-horizon optimal control problems, where the dynamic control system depends on Caputo fractional derivatives. First, by a suitable change of variable, we transform the fractional infinite-horizon optimal control problem to a finite-horizon one. Then, with the help of an approximation, we replace the Caputo derivative to integer order derivative. According to the Pontryagin minimum principle (PMP) for optimal control problems and by constructing an error function, we define an unconstrained minimization problem. In the optimization problem, we use trial solutions for state, costate and control functions where these trial solutions are constructed by using two-layered perceptron neural network. Some numerical results are introduced to explain our main results.
本文提出了一种求解依赖于 Caputo 分数导数的分数无限时域最优控制问题的有效数值方法。首先,通过适当的变量变换,我们将分数无限时域最优控制问题转化为有限时域问题。然后,借助逼近方法,我们将 Caputo 导数替换为整数阶导数。根据最优控制问题的 Pontryagin 最小原理(PMP),并通过构造误差函数,我们定义了一个无约束最小化问题。在优化问题中,我们使用两层感知机神经网络构造状态、伴随变量和控制函数的试探解。我们引入了一些数值结果来说明我们的主要结果。