Suppr超能文献

通过古德曼神经网络求解时滞分数阶最优控制问题及收敛结果

Solving time delay fractional optimal control problems via a Gudermannian neural network and convergence results.

作者信息

Kheyrinataj Farzaneh, Nazemi Alireza, Mortezaee Marziyeh

机构信息

Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran.

出版信息

Network. 2023 Feb-Feb;34(1-2):122-150. doi: 10.1080/0954898X.2023.2173817. Epub 2023 Feb 24.

Abstract

In this paper, we propose a Gudermannian neural network scheme to solve optimal control problems of fractional-order system with delays in state and control. The fractional derivative is described in the Caputo sense. The problem is first transformed, using a Padé approximation, to one without a time-delayed argument. We try to approximate the solution of the Hamiltonian conditions based on the Pontryagin minimum principle. For this purpose, we use trial solutions for the states, Lagrange multipliers, and control functions where these trial solutions are constructed by using two-layered perceptron. We then minimize the error function using an unconstrained optimization scheme where weight and biases associated with all neurons are unknown. Some numerical examples are given to illustrate the effectiveness of the proposed method.

摘要

在本文中,我们提出了一种古德曼神经网络方案,用于解决具有状态和控制延迟的分数阶系统的最优控制问题。分数导数采用卡普托意义下的描述。该问题首先通过帕德近似变换为一个没有时间延迟自变量的问题。我们尝试基于庞特里亚金最小值原理近似哈密顿条件的解。为此,我们对状态、拉格朗日乘子和控制函数使用试探解,其中这些试探解是通过使用两层感知器构建的。然后,我们使用一种无约束优化方案来最小化误差函数,其中与所有神经元相关的权重和偏差是未知的。给出了一些数值例子来说明所提方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验