Suppr超能文献

氯化促进的富勒烯骨架转变

Chlorination-Promoted Skeletal Transformations of Fullerenes.

作者信息

Yang Shangfeng, Ioffe Ilya N, Troyanov Sergey I

机构信息

Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering , University of Science and Technology of China , Hefei 230026 , China.

Department of Chemistry , Moscow State University , 119991 Moscow , Russia.

出版信息

Acc Chem Res. 2019 Jul 16;52(7):1783-1792. doi: 10.1021/acs.accounts.9b00175. Epub 2019 Jun 10.

Abstract

Classical fullerenes are built of pentagonal and hexagonal rings, and the conventional syntheses produce only those isomers that obey the isolated-pentagon rule (IPR), where all pentagonal rings are separated from each other by hexagonal rings. Upon exohedral derivatization, the IPR fullerene cages normally retain their connectivity pattern. However, it has been discovered that high-temperature chlorination of fullerenes with SbCl or VCl can induce skeletal transformations that alter the carbon cage topology, as directly evidenced by single crystal X-ray diffraction studies of the chlorinated products of a series of fullerenes in the broad range of C to C. Two general types of transformations have been identified: (i) the Stone-Wales rearrangement (SWR) that consists of a rotation of a C-C bond by 90°, and (ii) the removal of a C-C bond, i.e., C loss (C2L). Single- or multistep SWR and/or C2L transformations afford either classical non-IPR fullerenes bearing fused pentagons (highlighted in red in the TOC picture) or nonclassical () fullerenes with = 1-3 heptagonal rings (highlighted in blue in the TOC picture) often flanked by fused pentagons. Several subtypes of the SWR and C2L processes can be further discerned depending on the local topology of the transformed region of the cage. Under the chlorination conditions, the non-IPR and carbon cages that would be energetically unfavorable and mostly labile in their pristine state are instantaneously stabilized by chlorination of the pentagon-pentagon junctions and by delimitation of the original spherical π-system into smaller favorable aromatic fragments. The significance of the chlorination-promoted skeletal transformations within the realm of fullerene chemistry is demonstrated by the growing body of examples. To date, these include single- and multistep SWRs in the buckminsterfullerene C and in the higher fullerenes C(1), C(2), C(3), and C102(19), single and multistep C2Ls (i.e., cage shrinkage) in C(16), C(33), C(28), C(50), C(80), C(114), and C102(19), and multistep combinations of SWRs and C2Ls in C(3), C(33), and C(18), (IPR isomer numbering in parentheses is according to the spiral algorithm). Remarkably, an IPR precursor can give rise to versatile transformed chlorinated fullerene cages formed via branched pathways. The products can be recovered either in their initial chlorinated form or as more soluble CF/F derivatives obtained by an additional trifluoromethylation workup. Reconstruction of the skeletal transformation pathways is often complicated due to the lack of the isolable intermediate products in the multistep cases. Therefore, it is usually based on the principle of selecting the shortest pathways between the starting and the final cage. The quantum-chemical calculations illustrate the detailed mechanisms of the SWR and C2L transformations and the thermodynamic driving forces behind them. A particularly important aspect is the interplay between the chlorination patterns and the regiochemistry of the skeletal transformations.

摘要

经典富勒烯由五边形和六边形环构成,传统合成方法仅能得到遵循孤立五边形规则(IPR)的异构体,即所有五边形环都被六边形环彼此隔开。在进行外表面衍生化时,IPR富勒烯笼通常会保持其连接模式。然而,人们发现用SbCl或VCl对富勒烯进行高温氯化可引发骨架转变,从而改变碳笼拓扑结构,一系列从C到C的富勒烯氯化产物的单晶X射线衍射研究直接证明了这一点。已确定了两种一般类型的转变:(i)由C-C键旋转90°构成的斯通-威尔士重排(SWR),以及(ii)C-C键的去除,即C损失(C2L)。单步或多步SWR和/或C2L转变可产生带有稠合五边形的经典非IPR富勒烯(在TOC图中用红色突出显示)或具有1 - 3个七边形环的非经典()富勒烯(在TOC图中用蓝色突出显示),其两侧通常伴有稠合五边形。根据笼转化区域的局部拓扑结构,还可进一步区分SWR和C2L过程的几个子类型。在氯化条件下,原本能量上不利且大多不稳定的非IPR和碳笼通过五边形-五边形连接点的氯化以及将原始球形π-体系划分为更小的有利芳香片段而瞬间稳定下来。越来越多的实例证明了富勒烯化学领域中氯化促进的骨架转变的重要性。迄今为止,这些实例包括巴基球C以及更高富勒烯C(1)、C(2)、C(3)和C102(19)中的单步和多步SWR,C(16)、C(33)、C(28)、C(50)、C(80)、C(114)和C10(19)中的单步和多步C2L(即笼收缩),以及C(3)、C(33)和C(18)中的SWR和C2L的多步组合(括号中的IPR异构体编号根据螺旋算法)。值得注意的是,一个IPR前体可通过分支途径产生多种转化后的氯化富勒烯笼。产物可以以其初始氯化形式回收,也可以作为通过额外的三氟甲基化后处理获得的更易溶的CF/F衍生物回收。由于在多步情况下缺乏可分离的中间产物,骨架转变途径的重建通常很复杂。因此,它通常基于选择起始笼和最终笼之间最短途径的原则。量子化学计算阐明了SWR和C2L转变的详细机制以及它们背后的热力学驱动力。一个特别重要的方面是氯化模式与骨架转变区域化学之间的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验