Cancer Research Center (IBMCC-CSIC/USAL-IBSAL), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC) CB16/12/00400, Instituto de Salud Carlos III, Madrid, Spain.
CLIP Cytometry, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
J Immunol Methods. 2019 Dec;475:112618. doi: 10.1016/j.jim.2019.06.009. Epub 2019 Jun 7.
Fluorochrome selection is a key step in designing multi-color antibody panels. The list of available fluorochromes is continuously growing, fitting current needs in clinical flow cytometry to simultaneously use more markers to better define multiple leukocyte subpopulations in a single tube. Several criteria guide fluorochrome selection: i) the fluorescence profiles (excitation and emission), ii) relative brightness, iii) fluorescence overlap, iv) fluorochrome stability, and v) reproducible conjugation to antibodies. Here we used 75 samples (45 bone marrow and 30 blood) to illustrate EuroFlow strategies for evaluation of compatible fluorochromes, and how the results obtained guide fluorochrome selection as a critical step in the antibody-panel building process. Our results allowed identification of optimal fluorescence profiles (e.g. higher fluorescence intensity and/or resolution with limited fluorescence overlap into neighbor channels) for brilliant violet (BV)421 and BV510 in the violet laser and allophycocyanin (APC) hilite 7 (H7) or APC C750 in the red laser vs. other candidate fluorochromes generally applied for the same detectors and here evaluated. Moreover, evaluation of the same characteristics for another group of fluorochromes (e.g. BV605, BV650, PE CF594, AF700 or APC AF700) guided selection of the most appropriate fluorochrome conjugates to be combined in a multi-color antibody panel. Albeit this is a demanding approach, it could be successfully applied for selection of fluorochrome combinations for the EuroFlow antibody panels for diagnosis, classification and monitoring of hematological malignancies and primary immunodeficiencies. Consequently, sets of 8-, 10- and 12-color fluorochrome combinations are proposed as frame of reference for initial antibody panel design.
荧光染料的选择是设计多色抗体组合的关键步骤。可用荧光染料的种类在不断增加,以满足临床流式细胞术中的当前需求,即在单个管中同时使用更多的标记物,从而更好地定义多个白细胞亚群。荧光染料的选择有以下几个标准:i)荧光特性(激发和发射),ii)相对亮度,iii)荧光重叠,iv)荧光染料稳定性,以及 v)抗体的可重现结合。在这里,我们使用了 75 个样本(45 个骨髓样本和 30 个血液样本)来说明 EuroFlow 评估兼容荧光染料的策略,以及如何获得的结果指导荧光染料的选择,这是抗体组合构建过程中的关键步骤。我们的结果确定了最佳的荧光特性(例如,在与相邻通道的荧光重叠有限的情况下,具有更高的荧光强度和/或分辨率),在紫激光中选择 Brilliant Violet(BV)421 和 BV510,在红激光中选择 Allophycocyanin(APC)hilite 7(H7)或 APC C750,而不是其他通常应用于相同检测器的候选荧光染料。此外,对另一组荧光染料(例如 BV605、BV650、PE CF594、AF700 或 APC AF700)进行相同特性的评估,指导选择最合适的荧光染料缀合物,以组合成多色抗体组合。尽管这是一种要求很高的方法,但它可以成功地应用于选择 EuroFlow 抗体组合的荧光染料组合,用于诊断、分类和监测血液系统恶性肿瘤和原发性免疫缺陷。因此,提出了 8、10 和 12 色荧光染料组合的组合作为初始抗体组合设计的参考框架。