Suppr超能文献

动态基因组规模的细胞特异性代谢模型揭示了卵巢滤泡发育过程中新型的细胞间和细胞内代谢通讯。

Dynamic genome-scale cell-specific metabolic models reveal novel inter-cellular and intra-cellular metabolic communications during ovarian follicle development.

机构信息

Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.

Luxembourg Center for Systems Biology, University of Luxembourg, Esch-sur-Alzette, Luxembourg, L-4365, Luxembourg.

出版信息

BMC Bioinformatics. 2019 Jun 10;20(1):307. doi: 10.1186/s12859-019-2825-2.

Abstract

BACKGROUND

The maturation of the female germ cell, the oocyte, requires the synthesis and storing of all the necessary metabolites to support multiple divisions after fertilization. Oocyte maturation is only possible in the presence of surrounding, diverse, and changing layers of somatic cells. Our understanding of metabolic interactions between the oocyte and somatic cells has been limited due to dynamic nature of ovarian follicle development, thus warranting a systems approach.

RESULTS

Here, we developed a genome-scale metabolic model of the mouse ovarian follicle. This model was constructed using an updated mouse general metabolic model (Mouse Recon 2) and contains several key ovarian follicle development metabolic pathways. We used this model to characterize the changes in the metabolism of each follicular cell type (i.e., oocyte, granulosa cells, including cumulus and mural cells), during ovarian follicle development in vivo. Using this model, we predicted major metabolic pathways that are differentially active across multiple follicle stages. We identified a set of possible secreted and consumed metabolites that could potentially serve as biomarkers for monitoring follicle development, as well as metabolites for addition to in vitro culture media that support the growth and maturation of primordial follicles.

CONCLUSIONS

Our systems approach to model follicle metabolism can guide future experimental studies to validate the model results and improve oocyte maturation approaches and support growth of primordial follicles in vitro.

摘要

背景

女性生殖细胞——卵母细胞的成熟需要合成和储存所有必要的代谢物,以支持受精后的多次分裂。卵母细胞的成熟只有在周围存在多样化和不断变化的体细胞层的情况下才有可能。由于卵巢卵泡发育的动态性质,我们对卵母细胞和体细胞之间代谢相互作用的理解受到限制,因此需要采用系统方法。

结果

在这里,我们开发了一种基于小鼠卵巢卵泡的基因组规模代谢模型。该模型是使用更新的小鼠一般代谢模型(Mouse Recon 2)构建的,包含几个关键的卵巢卵泡发育代谢途径。我们使用该模型来描述在体内卵巢卵泡发育过程中每个卵泡细胞类型(即卵母细胞、颗粒细胞,包括卵丘和壁细胞)的代谢变化。使用该模型,我们预测了在多个卵泡阶段中差异活跃的主要代谢途径。我们确定了一组可能的分泌和消耗代谢物,这些代谢物可作为监测卵泡发育的生物标志物,以及可添加到体外培养物中的代谢物,以支持原始卵泡的生长和成熟。

结论

我们的模型卵泡代谢的系统方法可以指导未来的实验研究,以验证模型结果并改进卵母细胞成熟方法,以及支持原始卵泡在体外的生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/6558917/5d38ef829f06/12859_2019_2825_Fig1_HTML.jpg

相似文献

3
Control of Oocyte Growth and Development by Intercellular Communication Within the Follicular Niche.
Results Probl Cell Differ. 2016;58:191-224. doi: 10.1007/978-3-319-31973-5_8.
4
Spatial Characterization of Bioenergetics and Metabolism of Primordial to Preovulatory Follicles in Whole Ex Vivo Murine Ovary.
Biol Reprod. 2016 Dec;95(6):129. doi: 10.1095/biolreprod.116.142141. Epub 2016 Sep 28.
5
7
Oocyte-somatic cell interactions during follicle development in mammals.
Anim Reprod Sci. 2004 Jul;82-83:431-46. doi: 10.1016/j.anireprosci.2004.05.017.
8
Ovarian granulosa cell survival and proliferation requires the gonad-selective TFIID subunit TAF4b.
Dev Biol. 2007 Mar 15;303(2):715-26. doi: 10.1016/j.ydbio.2006.12.011. Epub 2006 Dec 9.
9
[Reconsidering the roles of female germ cells in ovarian development and folliculogenesis].
Biol Aujourdhui. 2011;205(4):223-33. doi: 10.1051/jbio/2011022. Epub 2012 Jan 19.
10
Control of Mammalian Oocyte Development by Interactions with the Maternal Follicular Environment.
Results Probl Cell Differ. 2017;63:17-41. doi: 10.1007/978-3-319-60855-6_2.

引用本文的文献

1
Nitric oxide synthase and its function in animal reproduction: an update.
Front Physiol. 2023 Nov 7;14:1288669. doi: 10.3389/fphys.2023.1288669. eCollection 2023.
2
Successful 3D culture and transplantation of mouse isolated preantral follicles in hydrogel of bioengineered Wharton's jelly.
PLoS One. 2023 Sep 20;18(9):e0290095. doi: 10.1371/journal.pone.0290095. eCollection 2023.
3
Multi-omics reveal the metabolic patterns in mouse cumulus cells during oocyte maturation.
J Ovarian Res. 2023 Aug 8;16(1):156. doi: 10.1186/s13048-023-01237-8.
4
Metabolic Control of Germline Formation and Differentiation in Mammals.
Sex Dev. 2022;16(5-6):388-403. doi: 10.1159/000520662. Epub 2022 Jan 27.
5
Hypothalamic Transcriptome Analysis Reveals the Crucial MicroRNAs and mRNAs Affecting Litter Size in Goats.
Front Vet Sci. 2021 Nov 1;8:747100. doi: 10.3389/fvets.2021.747100. eCollection 2021.
8
Clavulanic Acid Production by : Insights from Systems Biology, Strain Engineering, and Downstream Processing.
Antibiotics (Basel). 2021 Jan 18;10(1):84. doi: 10.3390/antibiotics10010084.

本文引用的文献

1
Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling.
Cell Rep. 2017 Dec 5;21(10):2965-2977. doi: 10.1016/j.celrep.2017.07.048.
2
Protein profile of mouse ovarian follicles grown in vitro.
Mol Hum Reprod. 2017 Dec 1;23(12):827-841. doi: 10.1093/molehr/gax056.
3
Metabolomics of Small Numbers of Cells: Metabolomic Profiling of 100, 1000, and 10000 Human Breast Cancer Cells.
Anal Chem. 2017 Nov 7;89(21):11664-11671. doi: 10.1021/acs.analchem.7b03100. Epub 2017 Oct 26.
4
Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium.
Nat Genet. 2017 Aug;49(8):1231-1238. doi: 10.1038/ng.3901. Epub 2017 Jun 26.
5
Spatial Characterization of Bioenergetics and Metabolism of Primordial to Preovulatory Follicles in Whole Ex Vivo Murine Ovary.
Biol Reprod. 2016 Dec;95(6):129. doi: 10.1095/biolreprod.116.142141. Epub 2016 Sep 28.
7
Using Genome-scale Models to Predict Biological Capabilities.
Cell. 2015 May 21;161(5):971-987. doi: 10.1016/j.cell.2015.05.019.
8
Proteomics. Tissue-based map of the human proteome.
Science. 2015 Jan 23;347(6220):1260419. doi: 10.1126/science.1260419.
10
Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles.
Biol Reprod. 2015 Jan;92(1):23. doi: 10.1095/biolreprod.114.121756. Epub 2014 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验