Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
Adv Exp Med Biol. 2019;1124:329-356. doi: 10.1007/978-981-13-5895-1_14.
The microvasculature is composed of arterioles, capillaries and venules. Spontaneous arteriolar constrictions reduce effective vascular resistance to enhance tissue perfusion, while spontaneous venular constrictions facilitate the drainage of tissue metabolites by pumping blood. In the venules of visceral organs, mural cells, i.e. smooth muscle cells (SMCs) or pericytes, periodically generate spontaneous phasic constrictions, Ca transients and transient depolarisations. These events arise from spontaneous Ca release from the sarco-endoplasmic reticulum (SR/ER) and the subsequent opening of Ca-activated chloride channels (CaCCs). CaCC-dependent depolarisation further activates L-type voltage-dependent Ca channels (LVDCCs) that play a critical role in maintaining the synchrony amongst mural cells. Mural cells in arterioles or capillaries are also capable of developing spontaneous activity. Non-contractile capillary pericytes generate spontaneous Ca transients primarily relying on SR/ER Ca release. Synchrony amongst capillary pericytes depends on gap junction-mediated spread of depolarisations resulting from the opening of either CaCCs or T-type VDCCs (TVDCCs) in a microvascular bed-dependent manner. The propagation of capillary Ca transients into arterioles requires the opening of either L- or TVDCCs again depending on the microvascular bed. Since the blockade of gap junctions or CaCCs prevents spontaneous Ca transients in arterioles and venules but not capillaries, capillary pericytes appear to play a primary role in generating spontaneous activity of the microvasculature unit. Pericytes in capillaries where the interchange of substances between tissues and the circulation takes place may provide the fundamental drive for upstream arterioles and downstream venules so that the microvasculature network functions as an integrated unit.
微血管由小动脉、毛细血管和小静脉组成。小动脉的自发性收缩降低了有效血管阻力,从而增强了组织灌注,而小静脉的自发性收缩则促进了组织代谢产物的排出。在内脏器官的小静脉中,壁细胞(即平滑肌细胞或周细胞)周期性地产生自发性时相性收缩、Ca 瞬变和瞬时去极化。这些事件源自肌浆内质网(SR/ER)中的自发性 Ca 释放,随后是 Ca 激活氯通道(CaCCs)的开放。CaCC 依赖性去极化进一步激活 L 型电压依赖性 Ca 通道(LVDCCs),在维持壁细胞之间的同步性方面起着关键作用。小动脉或毛细血管中的壁细胞也能够产生自发性活动。非收缩性毛细血管周细胞主要依赖于 SR/ER Ca 释放产生自发性 Ca 瞬变。毛细血管周细胞之间的同步性取决于缝隙连接介导的去极化传播,这是由于 CaCC 或 T 型电压依赖性 Ca 通道(TVDCCs)的开放,这种方式依赖于微血管床。毛细血管 Ca 瞬变向小动脉的传播需要再次打开 L 型或 TVDCCs,这又取决于微血管床。由于缝隙连接或 CaCC 的阻断可防止小动脉和小静脉中的自发性 Ca 瞬变,但不能防止毛细血管中的自发性 Ca 瞬变,因此毛细血管周细胞似乎在产生微血管单位的自发性活动中起主要作用。发生组织与循环之间物质交换的毛细血管中的周细胞可能为上游小动脉和下游小静脉提供基本驱动力,从而使微血管网络作为一个整体单元发挥功能。