Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.
J Physiol. 2023 Dec;601(23):5213-5240. doi: 10.1113/JP284284. Epub 2023 Oct 11.
In hollow visceral organs, capillary pericytes appear to drive spontaneous Ca transients in the upstream arterioles. Here, mechanisms underlying the intercellular synchrony of pericyte Ca transients were explored. Ca dynamics in NG2 chondroitin sulphate proteoglycan (NG2)-expressing capillary pericytes were examined using rectal mucosa-submucosa preparations of NG2-GCaMP6 mice. Spontaneous Ca transients arising from endoplasmic reticulum Ca release were synchronously developed amongst capillary pericytes in a gap junction blocker (3 μM carbenoxolone)-sensitive manner and could spread into upstream vascular segments. Spontaneous Ca transients were suppressed by the Ca -activated Cl channel (CaCC) blocker niflumic acid and their synchrony was diminished by a TMEM16A inhibitor (3 μM Ani9) in accordance with TMEM16A immunoreactivity in pericytes. In capillaries where cyclooxygenase (COX)-2 immunoreactivity was expressed in endothelium but not pericytes, non-selective COX inhibitors (1 μM indomethacin or 10 μM diclofenac) or COX-2 inhibitor (10 μM NS 398) disrupted the synchrony of spontaneous Ca transients and raised the basal Ca level. Subsequent prostaglandin I (PGI ; 100 nM) or the K channel opener levcromakalim restored the synchrony with a reduction in the Ca level. PGI receptor antagonist (1 μM RO1138452) also disrupted the synchrony of spontaneous Ca transients and increased the basal Ca level. Subsequent levcromakalim restored the synchrony and reversed the Ca rise. Thus, the synchrony of spontaneous Ca transients in pericytes appears to be developed by the spread of spontaneous transient depolarisations arising from the opening of TMEM16A CaCCs. Endothelial PGI may play a role in maintaining the synchrony, presumably by stabilising the resting membrane potential in pericytes. KEY POINTS: Capillary pericytes in the rectal mucosa generate synchronous spontaneous Ca transients that could spread into the upstream vascular segment. Spontaneous Ca release from the endoplasmic reticulum (ER) triggers the opening of Ca -activated Cl channel TMEM16A and resultant depolarisations that spread amongst pericytes via gap junctions, establishing the synchrony of spontaneous Ca transients in pericytes. Prostaglandin I (PGI ), which is constitutively produced by the endothelium depending on cyclooxygenase-2, appears to prevent premature ER Ca releases in the pericytes allowing periodic, regenerative Ca releases. Endothelial PGI may maintain the synchrony of pericyte activity by stabilising pericyte resting membrane potential by opening of K channels.
在中空内脏器官中,毛细血管周细胞似乎在 upstream arterioles 中驱动自发的 Ca 瞬变。在这里,探索了周细胞 Ca 瞬变的细胞间同步的机制。使用 NG2-GCaMP6 小鼠的直肠黏膜-黏膜下层制剂,检查表达 NG2 软骨素硫酸盐蛋白聚糖 (NG2) 的毛细血管周细胞中的 Ca 动力学。自发的 Ca 瞬变源自内质网 Ca 释放,以缝隙连接阻滞剂 (3 μM 卡波酮) 敏感的方式在毛细血管周细胞中同步发展,并可扩散到上游血管段。钙激活氯离子通道 (CaCC) 阻滞剂尼氟灭酸抑制自发 Ca 瞬变,并根据周细胞中的 TMEM16A 免疫反应性降低其同步性。在毛细血管中,环氧合酶 (COX)-2 免疫反应性存在于内皮细胞中,但不存在于周细胞中,非选择性 COX 抑制剂 (1 μM 吲哚美辛或 10 μM 双氯芬酸) 或 COX-2 抑制剂 (10 μM NS 398) 破坏自发 Ca 瞬变的同步性并提高基础 Ca 水平。随后的前列腺素 I (PGI; 100 nM) 或钾通道开放剂 levcromakalim 恢复同步性,同时降低 Ca 水平。PGI 受体拮抗剂 (1 μM RO1138452) 也破坏了自发 Ca 瞬变的同步性并增加了基础 Ca 水平。随后的 levcromakalim 恢复同步性并逆转 Ca 升高。因此,周细胞中自发 Ca 瞬变的同步性似乎是通过 TMEM16A CaCC 开放引起的自发瞬变去极化的扩散产生的。内皮 PGI 可能在维持同步性方面发挥作用,可能通过稳定周细胞中的静息膜电位。关键点:直肠黏膜中的毛细血管周细胞产生可扩散到上游血管段的同步自发 Ca 瞬变。内质网 (ER) 中的自发 Ca 释放触发钙激活氯离子通道 TMEM16A 的开放和由此产生的去极化,这些去极化通过缝隙连接在周细胞之间传播,从而建立周细胞中自发 Ca 瞬变的同步性。前列腺素 I (PGI) 是由内皮细胞根据环氧合酶-2 组成性产生的,它似乎可以防止周细胞中内质网 Ca 释放过早发生,从而允许周期性的再生性 Ca 释放。内皮 PGI 通过打开钾通道可能通过稳定周细胞的静息膜电位来维持周细胞活动的同步性。