Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Beer Sheva 84105 , Israel.
Department of Chemistry , National Institute of Technology , Tiruchirappalli , TN - 620015 , India.
J Am Chem Soc. 2019 Jun 12;141(23):9170-9174. doi: 10.1021/jacs.9b03542. Epub 2019 Jun 3.
Alcohols, with hydroxyl groups compositionally identical to water itself, are consummate hydrophiles, whose high solubilities preclude spontaneous self-assembly in water. Nevertheless, the solute-solvent interactions associated with their highly favorable solvation enthalpies impose substantial entropic costs, similar in magnitude to those that drive the hydrophobic assembly of alkanes. We now show that under nanoconfined conditions this normally dormant "hydrophobicity" can emerge as the driving force for alcohol encapsulation. Using a porous molecular capsule, the displacement of endohedrally coordinated formate ligands (HCO) by 1,2-hydroxyl-functionalized l-glycerate (l-gly, l-HOCH(HO)CHCO) was investigated by van't Hoff analysis of variable-temperature H NMR in DO. At pD 5.8, l-gly uptake is enthalpically inhibited. Upon attenuation of this unfavorable change in enthalpy by cosequestration of protons within the alcoholic environment provided by encapsulated diol-functionalized ligands, - TΔ S° dominates over Δ H°, spontaneously filling the capsule to its host capacity of 24 l-gly ligands via an entropically driven hydrophobic response.
醇类化合物的组成部分羟基与水分子完全相同,是完美的亲水物质,其高溶解度使得它们在水中无法自发自组装。然而,与高溶解焓相关的溶剂化相互作用会带来巨大的熵成本,与驱动烷烃疏水自组装的熵成本相当。我们现在表明,在纳米受限的条件下,这种通常处于休眠状态的“疏水性”可以成为醇类包封的驱动力。通过使用多孔分子胶囊,我们通过在 DO 中进行变温 H NMR 的范特霍夫分析,研究了内笼配位的甲酸盐配体(HCO)被 1,2-羟基功能化的 l-甘油酸(l-甘油,l-HOCH(HO)CHCO)取代的情况。在 pD 5.8 时,l-甘油的摄取受到焓的抑制。通过将质子在胶囊内醇环境中共同捕获来减弱这种不利的焓变,从而使 - TΔ S°超过Δ H°,通过熵驱动的疏水响应,胶囊自发地将其容纳能力从 24 个 l-甘油配体填满至其宿主容量。