Rao Guodong, Altman Alison B, Brown Alexandra C, Tao Lizhi, Stich Troy A, Arnold John, Britt R David
Department of Chemistry , University of California at Davis , Davis , California 95616 , United States.
Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States.
Inorg Chem. 2019 Jun 17;58(12):7978-7988. doi: 10.1021/acs.inorgchem.9b00720. Epub 2019 Jun 2.
Accessing covalent bonding interactions between actinides and ligating atoms remains a central problem in the field. Our current understanding of actinide bonding is limited because of a paucity of diverse classes of compounds and the lack of established models. We recently synthesized a thorium (Th)-aluminum (Al) heterobimetallic molecule that represents a new class of low-valent Th-containing compounds. To gain further insight into this system and actinide-metal bonding more generally, it is useful to study their underlying electronic structures. Here, we report characterization by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy of two heterobimetallic compounds: (i) a CpThHAlCTMS [TMS = Si(CH); Cp = 1,3-di- tert-butylcyclopentadienyl] complex with bridging hydrides and (ii) an actinide-free CpTiHAlCTMS (Cp = cyclopentadienyl) analogue. Analyses of the hyperfine interactions between the paramagnetic trivalent metal centers and the surrounding magnetic nuclei, H and Al, yield spin distributions over both complexes. These results show that while the bridging hydrides in the two complexes have similar hyperfine couplings ( a = -9.7 and -10.7 MHz, respectively), the spin density on the Al ion in the Th complex is ∼5-fold larger than that in the titanium(3+) (Ti) analogue. This suggests a direct orbital overlap between Th and Al, leading to a covalent interaction between Th and Al. Our quantitative investigation by a pulse EPR technique deepens our understanding of actinide bonding to main-group elements.
研究锕系元素与配位原子之间的共价键相互作用仍然是该领域的核心问题。由于缺乏多样的化合物类别以及既定模型,我们目前对锕系元素键合的理解有限。我们最近合成了一种钍(Th)-铝(Al)异双金属分子,它代表了一类新型的低价含钍化合物。为了更深入地了解这个体系以及更广泛地了解锕系元素-金属键合,研究它们的潜在电子结构是很有用的。在这里,我们报告了两种异双金属化合物的电子顺磁共振(EPR)和电子-核双共振(ENDOR)光谱表征:(i)一种具有桥连氢化物的CpThHAlCTMS [TMS = Si(CH); Cp = 1,3-二叔丁基环戊二烯基] 配合物,以及(ii)一种不含锕系元素的CpTiHAlCTMS(Cp = 环戊二烯基)类似物。对顺磁三价金属中心与周围磁核H和Al之间的超精细相互作用的分析,得出了两种配合物的自旋分布。这些结果表明,虽然两种配合物中的桥连氢化物具有相似的超精细耦合(分别为a = -9.7和-10.7 MHz),但钍配合物中铝离子上的自旋密度比钛(3+)(Ti)类似物中的大5倍左右。这表明钍和铝之间存在直接的轨道重叠,导致钍和铝之间发生共价相互作用。我们通过脉冲EPR技术进行的定量研究加深了我们对锕系元素与主族元素键合的理解。