Suppr超能文献

终端和碱金属封端的铀(V)氮化物配合物的分子和电子结构。

Molecular and electronic structure of terminal and alkali metal-capped uranium(V) nitride complexes.

机构信息

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.

出版信息

Nat Commun. 2016 Dec 20;7:13773. doi: 10.1038/ncomms13773.

Abstract

Determining the electronic structure of actinide complexes is intrinsically challenging because inter-electronic repulsion, crystal field, and spin-orbit coupling effects can be of similar magnitude. Moreover, such efforts have been hampered by the lack of structurally analogous families of complexes to study. Here we report an improved method to U≡N triple bonds, and assemble a family of uranium(V) nitrides. Along with an isoelectronic oxo, we quantify the electronic structure of this 5f family by magnetometry, optical and electron paramagnetic resonance (EPR) spectroscopies and modelling. Thus, we define the relative importance of the spin-orbit and crystal field interactions, and explain the experimentally observed different ground states. We find optical absorption linewidths give a potential tool to identify spin-orbit coupled states, and show measurement of U···U super-exchange coupling in dimers by EPR. We show that observed slow magnetic relaxation occurs via two-phonon processes, with no obvious correlation to the crystal field.

摘要

确定锕系元素配合物的电子结构本质上具有挑战性,因为电子排斥、晶体场和自旋-轨道耦合效应的大小可能相近。此外,由于缺乏结构类似的配合物家族进行研究,这些努力受到了阻碍。在这里,我们报告了一种改进的 U≡N 三键方法,并组装了一系列铀(V)氮化物。我们通过磁测量、光学和电子顺磁共振(EPR)光谱和建模来定量研究这个 5f 族的电子结构。因此,我们确定了自旋-轨道和晶体场相互作用的相对重要性,并解释了实验观察到的不同基态。我们发现光学吸收线宽可能是识别自旋-轨道耦合态的一种工具,并通过 EPR 显示了在二聚体中测量 U···U 超交换耦合。我们表明,观察到的缓慢磁弛豫是通过双声子过程发生的,与晶体场没有明显的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3d5/5187438/5c7f7c708dd9/ncomms13773-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验