School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Nat Commun. 2016 Dec 20;7:13773. doi: 10.1038/ncomms13773.
Determining the electronic structure of actinide complexes is intrinsically challenging because inter-electronic repulsion, crystal field, and spin-orbit coupling effects can be of similar magnitude. Moreover, such efforts have been hampered by the lack of structurally analogous families of complexes to study. Here we report an improved method to U≡N triple bonds, and assemble a family of uranium(V) nitrides. Along with an isoelectronic oxo, we quantify the electronic structure of this 5f family by magnetometry, optical and electron paramagnetic resonance (EPR) spectroscopies and modelling. Thus, we define the relative importance of the spin-orbit and crystal field interactions, and explain the experimentally observed different ground states. We find optical absorption linewidths give a potential tool to identify spin-orbit coupled states, and show measurement of U···U super-exchange coupling in dimers by EPR. We show that observed slow magnetic relaxation occurs via two-phonon processes, with no obvious correlation to the crystal field.
确定锕系元素配合物的电子结构本质上具有挑战性,因为电子排斥、晶体场和自旋-轨道耦合效应的大小可能相近。此外,由于缺乏结构类似的配合物家族进行研究,这些努力受到了阻碍。在这里,我们报告了一种改进的 U≡N 三键方法,并组装了一系列铀(V)氮化物。我们通过磁测量、光学和电子顺磁共振(EPR)光谱和建模来定量研究这个 5f 族的电子结构。因此,我们确定了自旋-轨道和晶体场相互作用的相对重要性,并解释了实验观察到的不同基态。我们发现光学吸收线宽可能是识别自旋-轨道耦合态的一种工具,并通过 EPR 显示了在二聚体中测量 U···U 超交换耦合。我们表明,观察到的缓慢磁弛豫是通过双声子过程发生的,与晶体场没有明显的相关性。