Suppr超能文献

无涡旋高温超导纳米线在高磁场下的去配对电流

Depairing Current at High Magnetic Fields in Vortex-Free High-Temperature Superconducting Nanowires.

作者信息

Rouco Victor, Navau Carles, Del-Valle Nuria, Massarotti Davide, Papari Gian Paolo, Stornaiuolo Daniela, Obradors Xavier, Puig Teresa, Tafuri Francesco, Sanchez Alvaro, Palau Anna

机构信息

Dipartimento di Fisica , Universita degli Studi di Napoli Federico II , 80126 Napoli , Italy.

Departament de Fisica , Universitat Autonoma de Barcelona , 08193 Bellaterra , Catalonia , Spain.

出版信息

Nano Lett. 2019 Jun 3. doi: 10.1021/acs.nanolett.9b01693.

Abstract

Superconductors are essential in many present and future technologies, from large-scale devices for medical imaging, accelerators, or fusion experiments to ultra-low-power superconducting electronics. However, their potential applicability, and particularly that of high-temperature superconductors (HTS), is severely affected by limited performances at large magnetic fields and high temperatures, where their use is most needed. One of the main reasons for these limitations is the presence of quantized vortices, whose movements result in losses, internal noise, and reduced performances. The conventional strategy to overcome the flow of vortices is to pin them along artificial defects. Here, we theoretically and experimentally demonstrate that critical-current density in high-temperature superconductors can reach unprecedented high values at high fields and temperatures by preventing vortex entry. By tailoring the geometry, that is, reducing the width, W, of nanowire-patterned HTS films, the range of the Meissner state, for which no vortices are present, is extended up to very large applied field values, on the order of ∼1 T. Current densities on the order of the depairing current can be sustained under high fields for a wide range of temperatures. Results may be relevant both for devising new conductors carrying depairing-current values at high temperatures and large magnetic fields and for reducing flux noise in sensors and quantum systems.

摘要

超导体在许多当前和未来的技术中都至关重要,从用于医学成像、加速器或聚变实验的大型设备到超低功耗超导电子器件。然而,它们的潜在适用性,特别是高温超导体(HTS)的适用性,在大磁场和高温下(这些情况下最需要使用超导体)受到性能受限的严重影响。这些限制的主要原因之一是存在量子化涡旋,其运动会导致损耗、内部噪声和性能下降。克服涡旋流动的传统策略是将它们沿着人工缺陷钉扎。在这里,我们通过理论和实验证明,通过防止涡旋进入,高温超导体中的临界电流密度在高场和高温下可以达到前所未有的高值。通过调整几何形状,即减小纳米线图案化HTS薄膜的宽度W,迈斯纳态(不存在涡旋)的范围可以扩展到非常大的外加场值,约为1 T量级。在高场下,对于很宽范围的温度,可以维持失超电流量级的电流密度。这些结果对于设计在高温和大磁场下承载失超电流值的新型导体以及降低传感器和量子系统中的磁通噪声可能都具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验