Mani Devendra, de Tudela Ricardo Pérez, Schwan Raffael, Pal Nitish, Körning Saskia, Forbert Harald, Redlich Britta, van der Meer A F G, Schwaab Gerhard, Marx Dominik, Havenith Martina
Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany.
Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
Sci Adv. 2019 Jun 7;5(6):eaav8179. doi: 10.1126/sciadv.aav8179. eCollection 2019 Jun.
Chemical reactions at ultralow temperatures are of fundamental importance to primordial molecular evolution as it occurs on icy mantles of dust nanoparticles or on ultracold water clusters in dense interstellar clouds. As we show, studying reactions in a stepwise manner in ultracold helium nanodroplets by mass-selective infrared (IR) spectroscopy provides an avenue to mimic these "stardust conditions" in the laboratory. In our joint experimental/theoretical study, in which we successively add HO molecules to HCl, we disclose a unique IR fingerprint at 1337 cm that heralds hydronium (HO) formation and, thus, acid dissociation generating solvated protons. In stark contrast, no reaction is observed when reversing the sequence by allowing HCl to interact with preformed small embryonic ice-like clusters. Our ab initio simulations demonstrate that not only reaction stoichiometry but also the reaction sequence needs to be explicitly considered to rationalize ultracold chemistry.
超低温下的化学反应对于原始分子演化至关重要,因为这种演化发生在尘埃纳米颗粒的冰质幔层上或致密星际云中的超冷水团簇上。正如我们所展示的,通过质量选择红外(IR)光谱在超冷氦纳米液滴中逐步研究反应,为在实验室中模拟这些“星尘条件”提供了一条途径。在我们的联合实验/理论研究中,我们将HO分子依次添加到HCl中,在1337 cm处揭示了一个独特的红外指纹,这预示着水合氢离子(HO)的形成,从而酸解离产生溶剂化质子。与之形成鲜明对比的是,当颠倒顺序让HCl与预先形成的小的胚胎状类冰团簇相互作用时,未观察到反应。我们的从头算模拟表明,为了合理解释超冷化学,不仅需要明确考虑反应化学计量,还需要考虑反应顺序。