Yang Daejong, Cho Incheol, Kim Donghwan, Lim Mi Ae, Li Zhiyong, Ok Jong G, Lee Moonjin, Park Inkyu
Department of Mechanical and Automotive Engineering , Kongju National University , 1223-24 Cheonan-daero , Seobuk-gu, Cheonan , Chungcheongnam-do 31080 , South Korea.
Korea Electric Power Research Institute (KEPRI) , Korea Electric Power Corporation (KEPCO) , 105 Munji-ro , Yuseong-gu, Daejeon 34056 , South Korea.
ACS Appl Mater Interfaces. 2019 Jul 10;11(27):24298-24307. doi: 10.1021/acsami.9b06951. Epub 2019 Jun 24.
We have developed a novel fabrication method for flexible gas sensors for toxic gases based on sequential wet chemical reaction. In specific, zinc oxide (ZnO) nanowires were locally synthesized and directly integrated on a flexible polymer substrate using localized hydrothermal synthesis methods and their surfaces were selectively functionalized with palladium (Pd) nanoparticles using a liquid phase deposition process. Because the entire process is conducted at a low temperature in a mild precursor solution, it can be applied for flexible substrates. Furthermore, the surface of ZnO nanowires was sulfurized by hydrogen sulfide (HS) gas to form zinc oxide/zinc sulfide (ZnO/ZnS) core-shell nanowires for stable sensing of HS gas. The locally synthesized ZnO/ZnS core-shell nanowires enable an ultracompact-sized device, and Pd nanoparticles improve the sensing performance and reduce the operating temperature (200 °C). The device shows a high sensitivity [( - )/ × 100% = 4491% to 10 ppm], fast response (response/recovery time <100 s) to hydrogen sulfide, and outstanding selectivity (>100 times) to other toxic gases (e.g., carbon monoxide, acetone, ethanol, and toluene). Moreover, vertically synthesized nanowires provide a long bending path, which reduces the mechanical stresses on the structure. The devices showed stable gas sensing performance under 9 mm positive radius of curvature and 5 mm negative radius of curvature. The mechanical robustness of the device was also verified by numerical simulations which showed dramatic decrease of maximum stress and strain to 4.2 and 5.0%, respectively.
我们基于连续湿化学反应开发了一种用于有毒气体的柔性气体传感器的新型制造方法。具体而言,使用局部水热合成方法在柔性聚合物基板上局部合成氧化锌(ZnO)纳米线并直接集成,然后使用液相沉积工艺用钯(Pd)纳米颗粒对其表面进行选择性功能化。由于整个过程在温和的前驱体溶液中低温进行,因此可应用于柔性基板。此外,ZnO纳米线的表面通过硫化氢(H₂S)气体硫化形成氧化锌/硫化锌(ZnO/ZnS)核壳纳米线,用于稳定检测H₂S气体。局部合成的ZnO/ZnS核壳纳米线可实现超紧凑尺寸的器件,而Pd纳米颗粒可提高传感性能并降低工作温度(200°C)。该器件对硫化氢显示出高灵敏度[(-)/×100% = 4491%至10 ppm]、快速响应(响应/恢复时间<100 s)以及对其他有毒气体(例如一氧化碳、丙酮、乙醇和甲苯)的出色选择性(>100倍)。此外,垂直合成的纳米线提供了长的弯曲路径,这减少了结构上的机械应力。该器件在9 mm正曲率半径和5 mm负曲率半径下显示出稳定的气体传感性能。通过数值模拟也验证了该器件的机械稳健性,模拟结果表明最大应力和应变分别急剧降低至4.2%和5.0%。