Shi Yuansheng, Li Shuai, Gao Ang, Zheng Jieyun, Zhang Qinghua, Lu Xia, Gu Lin, Cao Dapeng
State Key Laboratory of Organic-Inorganic Composites , Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029 , P. R. China.
School of Materials , Sun Yat-sen University , Guangzhou 510275 , P. R. China.
ACS Appl Mater Interfaces. 2019 Jul 10;11(27):24122-24131. doi: 10.1021/acsami.9b06233. Epub 2019 Jun 24.
Although the layered P2-type NaNiMnO materials show high discharge voltage and specific capacity, they suffer from severe structural instabilities and surface reaction upon Na exchange for sodium-ion batteries (SIBs). Therefore, it is quite necessary to reveal the underlying structural evolution mechanism and diffusion kinetics to improve the structural/electrochemical stability for application in SIBs. Here, we synthesize a P2-type NaAlNiMnO material by a small dose of Al replacing the Mn, aiming at enhancing the structural stability without sacrificing the average discharge voltage and theoretical capacity. The etching X-ray photoelectron spectroscopy and energy-dispersive X-ray mapping/line scan results indicate that the Al doping induces dual effects of the AlO surface coating and the bulk lattice doping, which efficiently suppress the accumulation of structural irreversible changes from P2 to O2, the volume changes, and surface reactions at high voltage. Obvious improvements are further found on the diffusion kinetics of Na ions as well as the decrease of overall voltage polarization. Interestingly, the dual effects of Al doping lead to the significant increase of capacity retention after 50 cycles and improvement of rate capability compared with the undoped counterpart between 2.0 and 4.5 V. Hence, this work sheds new light on stabilizing the P2-Na-Ni-Mn-O materials, which provides a rewarding avenue to develop better SIBs.
尽管层状P2型NaNiMnO材料具有较高的放电电压和比容量,但在钠离子电池(SIBs)的钠交换过程中,它们会遭受严重的结构不稳定性和表面反应。因此,揭示潜在的结构演变机制和扩散动力学对于提高SIBs应用中的结构/电化学稳定性非常必要。在此,我们通过用少量Al取代Mn来合成一种P2型NaAlNiMnO材料,旨在在不牺牲平均放电电压和理论容量的情况下提高结构稳定性。蚀刻X射线光电子能谱和能量色散X射线映射/线扫描结果表明,Al掺杂诱导了AlO表面涂层和体相晶格掺杂的双重效应,这有效地抑制了从P2到O2的结构不可逆变化的积累、体积变化以及高压下的表面反应。进一步发现,Na离子的扩散动力学有明显改善,整体电压极化降低。有趣的是,与未掺杂的对应物相比,Al掺杂的双重效应导致在2.0至4.5 V之间50次循环后的容量保持率显著提高,倍率性能也得到改善。因此,这项工作为稳定P2-Na-Ni-Mn-O材料提供了新的思路,为开发更好的SIBs提供了一条有益的途径。