文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

快速合成一种新型组合递药系统,用于实现 siRNA 和阿霉素的协同抗癌作用。

Quick synthesis of a novel combinatorial delivery system of siRNA and doxorubicin for a synergistic anticancer effect.

机构信息

Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China.

Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.

出版信息

Int J Nanomedicine. 2019 May 15;14:3557-3569. doi: 10.2147/IJN.S198511. eCollection 2019.


DOI:10.2147/IJN.S198511
PMID:31190812
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6526930/
Abstract

Combining siRNA and other chemotherapeutic agents into one nanocarrier can overcome the multidrug resistance (MDR) phenomenon by synergistically MDR relative genes silencing and elevated chemotherapeutic activity. Most of these systems are typically fabricated through complicated procedures, which involves materials preparation, drug loading and modifications. Herein, the purpose of this study is to develop a new and fast co-delivery system of siRNA and doxorubicin for potentially synergistic cancer treatment. The co-delivery system is constructed conveniently by a stable complex consisting of doxorubicin bound to siRNA via intercalation firstly, followed by interacting with (3-Aminopropyl)triethoxysilane (APTES) electrostatically and Tetraethyl orthosilicate (TEOS) co-condensed, and the characterizations of the resultant nanocarrier are also investigated. Furthermore, this study evaluates the synergistic anti-cancer efficacy in MCF-7/MDR cells after treatment of siRNA and doxorubicin 'two in one' nanocarriers. We establish a new and fast method to craft a co-delivery system of siRNA and doxorubicin with controllable and nearly uniform size, and the entire fabrication process only costs in about 10 minutes. The resultant co-delivery system presents high loading capacities of siRNA and doxorubicin, and the encapsulated doxorubicin plays a pH-responsive control release. Further, biological functionality tests of the synthesized co-delivery nanocarriers show high inhibition of P-gp protein encoded by MDR-1 gene in MCF-7/MDR cells (a variant of human breast cancer cell line with drug resistance) after transfection of these nanocarriers carrying MDR-1 siRNA and doxorubicin simultaneously, which sensitize the MCF-7/MDR cells to doxorubicin, overall leading to improved cell suppression. Collectively, this co-delivery system not only serves as potent therapeutics for synergistic cancer therapy, it also may facilitate the bench-to-bedside translation of combinatorial delivery system as a robust drug nanocarrier by allowing for fabricating a simply and fast nanocarrier for co-delivery of siRNA and doxorubicin with predictable high production rate.

摘要

将 siRNA 和其他化疗药物结合到一个纳米载体中,可以通过协同沉默多药耐药(MDR)相关基因和提高化疗药物活性来克服多药耐药(MDR)现象。这些系统中的大多数通常是通过复杂的程序来制造的,包括材料的制备、药物的负载和修饰。在此,本研究旨在开发一种新的、快速的 siRNA 和阿霉素协同递药系统用于潜在的协同癌症治疗。该共递药系统通过首先将阿霉素与 siRNA 结合形成稳定的复合物,然后通过静电相互作用与(3-氨丙基)三乙氧基硅烷(APTES)相互作用,以及四乙氧基硅烷(TEOS)共缩合来构建,还对所得纳米载体的特性进行了研究。此外,本研究还评估了 MCF-7/MDR 细胞经 siRNA 和阿霉素“双管齐下”纳米载体处理后的协同抗癌疗效。我们建立了一种新的、快速的方法来制备具有可控且几乎均匀尺寸的 siRNA 和阿霉素共递药系统,整个制备过程仅需约 10 分钟。所得共递药系统具有高载药量的 siRNA 和阿霉素,封装的阿霉素具有 pH 响应性控制释放。此外,合成的共递药纳米载体的生物学功能测试表明,这些同时携带 MDR-1 siRNA 和阿霉素的纳米载体转染 MCF-7/MDR 细胞后,对多药耐药基因(MDR-1 基因)编码的 P-糖蛋白(P-gp)具有高抑制作用,使 MCF-7/MDR 细胞对阿霉素敏感,从而提高细胞抑制率。总的来说,该共递药系统不仅为协同癌症治疗提供了有效的治疗方法,还可能通过允许制备简单快速的纳米载体来促进组合递药系统的从实验室到临床的转化,作为一种强大的药物纳米载体,以可预测的高生产率同时递送 siRNA 和阿霉素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/800db5dc5446/IJN_A_198511_O_SF0005g.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/3ffebc8ef627/IJN-14-3557-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/400ccff81e01/IJN_A_198511_O_SF0001g.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/f5e90339faab/IJN_A_198511_O_SF0002g.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/2dff3a467d25/IJN-14-3557-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/9ea4815a260f/IJN_A_198511_O_SF0003g.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/53b0b75957f3/IJN-14-3557-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/d8a3777c9bcb/IJN_A_198511_O_SF0004g.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/800db5dc5446/IJN_A_198511_O_SF0005g.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/3ffebc8ef627/IJN-14-3557-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/400ccff81e01/IJN_A_198511_O_SF0001g.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/f5e90339faab/IJN_A_198511_O_SF0002g.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/2dff3a467d25/IJN-14-3557-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/9ea4815a260f/IJN_A_198511_O_SF0003g.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/53b0b75957f3/IJN-14-3557-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/d8a3777c9bcb/IJN_A_198511_O_SF0004g.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d5/6526930/800db5dc5446/IJN_A_198511_O_SF0005g.jpg

相似文献

[1]
Quick synthesis of a novel combinatorial delivery system of siRNA and doxorubicin for a synergistic anticancer effect.

Int J Nanomedicine. 2019-5-15

[2]
Multifunctional PLGA Nanobubbles as Theranostic Agents: Combining Doxorubicin and P-gp siRNA Co-Delivery Into Human Breast Cancer Cells and Ultrasound Cellular Imaging.

J Biomed Nanotechnol. 2015-12

[3]
Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery.

Biomaterials. 2015-1-17

[4]
Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles.

Colloids Surf B Biointerfaces. 2016-2-1

[5]
Reversal of multidrug resistance in vitro by co-delivery of MDR1 targeting siRNA and doxorubicin using a novel cationic poly(lactide-co-glycolide) nanoformulation.

Int J Pharm. 2014-11-20

[6]
Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma.

PLoS One. 2010-5-24

[7]
Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells.

Biomaterials. 2014-8-23

[8]
Systemic Codelivery of Thymoquinone and Doxorubicin by Targeted Mesoporous Silica Nanoparticle Sensitizes Doxorubicin-Resistant Breast Cancer by Interfering between the MDR1/P-gp and miR 298 Crosstalk.

ACS Biomater Sci Eng. 2024-10-14

[9]
Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethylenimine hydroxypropyl-β-cyclodextrin nanocarrier.

Int J Nanomedicine. 2015-4-23

[10]
Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery.

Chemistry. 2013-10-2

引用本文的文献

[1]
Chemotherapeutic drug scavenger-based combination therapy toward treating triple-negative breast cancer.

J Nanobiotechnology. 2025-7-1

[2]
Emerging role of small RNAs in inflammatory bowel disease and associated colorectal cancer (Review).

Int J Mol Med. 2025-2

[3]
Therapeutic delivery of siRNA for the management of breast cancer and triple-negative breast cancer.

Ther Deliv. 2024

[4]
Phosphorylation of AGO2 by TBK1 Promotes the Formation of Oncogenic miRISC in NSCLC.

Adv Sci (Weinh). 2024-4

[5]
RNA-based therapies: A cog in the wheel of lung cancer defense.

Mol Cancer. 2021-3-19

[6]
Preparation, Biosafety, and Cytotoxicity Studies of a Newly Tumor-Microenvironment-Responsive Biodegradable Mesoporous Silica Nanosystem Based on Multimodal and Synergistic Treatment.

Oxid Med Cell Longev. 2020

[7]
Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy.

ACS Comb Sci. 2020-12-14

[8]
Bioengineered siRNA-Based Nanoplatforms Targeting Molecular Signaling Pathways for the Treatment of Triple Negative Breast Cancer: Preclinical and Clinical Advancements.

Pharmaceutics. 2020-9-29

本文引用的文献

[1]
Super-resolution Imaging of Proton Sponge-Triggered Rupture of Endosomes and Cytosolic Release of Small Interfering RNA.

ACS Nano. 2019-1-2

[2]
A Convergence-Based Framework for Cancer Drug Resistance.

Cancer Cell. 2018-5-14

[3]
Reversing Multidrug Resistance by Multiplexed Gene Silencing for Enhanced Breast Cancer Chemotherapy.

ACS Appl Mater Interfaces. 2018-4-24

[4]
Codelivery of doxorubicin and MDR1-siRNA by mesoporous silica nanoparticles-polymerpolyethylenimine to improve oral squamous carcinoma treatment.

Int J Nanomedicine. 2017-12-28

[5]
Cancer stem cells revisited.

Nat Med. 2017-10-6

[6]
Development of a peptide-modified siRNA nanocomplex for hepatic stellate cells.

Nanomedicine. 2017-9-7

[7]
Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.

Drug Resist Updat. 2017-5-21

[8]
Synergistic antitumor effects of combination treatment with metronomic doxorubicin and VEGF-targeting RNAi nanoparticles.

J Control Release. 2017-8-16

[9]
Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy.

ACS Nano. 2017-3-3

[10]
Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient siRNA Delivery.

Mol Pharm. 2017-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索