Suppr超能文献

神经母细胞瘤中的癌症干细胞:拓展治疗前沿

Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier.

作者信息

Bahmad Hisham F, Chamaa Farah, Assi Sahar, Chalhoub Reda M, Abou-Antoun Tamara, Abou-Kheir Wassim

机构信息

Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.

Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.

出版信息

Front Mol Neurosci. 2019 May 27;12:131. doi: 10.3389/fnmol.2019.00131. eCollection 2019.

Abstract

Neuroblastoma (NB) is the most common extracranial solid tumor often diagnosed in childhood. Despite intense efforts to develop a successful treatment, current available therapies are still challenged by high rates of resistance, recurrence and progression, most notably in advanced cases and highly malignant tumors. Emerging evidence proposes that this might be due to a subpopulation of cancer stem cells (CSCs) or tumor-initiating cells (TICs) found in the bulk of the tumor. Therefore, the development of more targeted therapy is highly dependent on the identification of the molecular signatures and genetic aberrations characteristic to this subpopulation of cells. This review aims at providing an overview of the key molecular players involved in NB CSCs and focuses on the experimental evidence from NB cell lines, patient-derived xenografts and primary tumors. It also provides some novel approaches of targeting multiple drivers governing the stemness of CSCs to achieve better anti-tumor effects than the currently used therapeutic agents.

摘要

神经母细胞瘤(NB)是儿童期最常见的颅外实体瘤。尽管人们为开发成功的治疗方法付出了巨大努力,但目前可用的治疗方法仍面临着高耐药率、复发率和进展率的挑战,在晚期病例和高度恶性肿瘤中尤为明显。新出现的证据表明,这可能是由于在肿瘤主体中发现的癌症干细胞(CSCs)或肿瘤起始细胞(TICs)亚群所致。因此,更具针对性的治疗方法的开发高度依赖于识别该细胞亚群特有的分子特征和基因畸变。本综述旨在概述参与NB CSCs的关键分子参与者,并重点关注来自NB细胞系、患者来源的异种移植瘤和原发性肿瘤的实验证据。它还提供了一些靶向多种驱动CSCs干性的方法,以实现比目前使用的治疗药物更好的抗肿瘤效果。

相似文献

1
Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier.
Front Mol Neurosci. 2019 May 27;12:131. doi: 10.3389/fnmol.2019.00131. eCollection 2019.
2
Cancer Stem Cells and Neuroblastoma: Characteristics and Therapeutic Targeting Options.
Front Endocrinol (Lausanne). 2019 Nov 19;10:782. doi: 10.3389/fendo.2019.00782. eCollection 2019.
3
XAV939 inhibits the stemness and migration of neuroblastoma cancer stem cells via repression of tankyrase 1.
Int J Oncol. 2014 Jul;45(1):121-8. doi: 10.3892/ijo.2014.2406. Epub 2014 Apr 28.
4
Medulloblastoma cancer stem cells: molecular signatures and therapeutic targets.
J Clin Pathol. 2020 May;73(5):243-249. doi: 10.1136/jclinpath-2019-206246. Epub 2020 Feb 7.
5
Genotype analysis of tumor-initiating cells expressing CD133 in neuroblastoma.
Genes Chromosomes Cancer. 2012 Aug;51(8):792-804. doi: 10.1002/gcc.21964. Epub 2012 Apr 18.
6
Role of stemness-related molecules in neuroblastoma.
Pediatr Res. 2012 Apr;71(4 Pt 2):511-5. doi: 10.1038/pr.2011.54. Epub 2012 Feb 1.
7
Metastatic neuroblastoma cancer stem cells exhibit flexible plasticity and adaptive stemness signaling.
Stem Cell Res Ther. 2015 Feb 20;6(1):2. doi: 10.1186/s13287-015-0002-8.
8
Neuroblastoma pathogenesis: deregulation of embryonic neural crest development.
Cell Tissue Res. 2018 May;372(2):245-262. doi: 10.1007/s00441-017-2747-0. Epub 2017 Dec 8.
9
Effect of β-carotene on cancer cell stemness and differentiation in SK-N-BE(2)C neuroblastoma cells.
Oncol Rep. 2013 Oct;30(4):1869-77. doi: 10.3892/or.2013.2643. Epub 2013 Jul 30.
10
Cancer stem cells and immunoresistance: clinical implications and solutions.
Transl Lung Cancer Res. 2015 Dec;4(6):689-703. doi: 10.3978/j.issn.2218-6751.2015.12.11.

引用本文的文献

4
LGR5: An emerging therapeutic target for cancer metastasis and chemotherapy resistance.
Cancer Metastasis Rev. 2025 Jan 17;44(1):23. doi: 10.1007/s10555-024-10239-x.
5
Leveraging Neural Crest-Derived Tumors to Identify NF1 Cancer Stem Cell Signatures.
Cancers (Basel). 2024 Oct 29;16(21):3639. doi: 10.3390/cancers16213639.
6
Long Non-Coding RNAs in Neuroblastoma: Pathogenesis, Biomarkers and Therapeutic Targets.
Int J Mol Sci. 2024 May 23;25(11):5690. doi: 10.3390/ijms25115690.
7
Cancer research in Lebanon: Scope of the most recent publications of an academic institution (Review).
Oncol Lett. 2024 Jun 3;28(2):350. doi: 10.3892/ol.2024.14484. eCollection 2024 Aug.
10
Therapy resistance in neuroblastoma: Mechanisms and reversal strategies.
Front Pharmacol. 2023 Feb 16;14:1114295. doi: 10.3389/fphar.2023.1114295. eCollection 2023.

本文引用的文献

1
Concise Reviews: Cancer Stem Cell Targeted Therapies: Toward Clinical Success.
Stem Cells Transl Med. 2019 Jan;8(1):75-81. doi: 10.1002/sctm.18-0123. Epub 2018 Oct 17.
4
Antiproliferative and apoptotic effect of LY2090314, a GSK-3 inhibitor, in neuroblastoma in vitro.
BMC Cancer. 2018 May 11;18(1):560. doi: 10.1186/s12885-018-4474-7.
5
Notch-1-PTEN-ERK1/2 signaling axis promotes HER2+ breast cancer cell proliferation and stem cell survival.
Oncogene. 2018 Aug;37(33):4489-4504. doi: 10.1038/s41388-018-0251-y. Epub 2018 May 10.
8
FTY-720 induces apoptosis in neuroblastoma via multiple signaling pathways.
Oncotarget. 2017 Nov 6;8(66):109985-109999. doi: 10.18632/oncotarget.22452. eCollection 2017 Dec 15.
9
Hypoxia and hypoxia-inducible factors in neuroblastoma.
Cell Tissue Res. 2018 May;372(2):269-275. doi: 10.1007/s00441-017-2701-1. Epub 2017 Oct 14.
10
ING5 activity in self-renewal of glioblastoma stem cells via calcium and follicle stimulating hormone pathways.
Oncogene. 2018 Jan 18;37(3):286-301. doi: 10.1038/onc.2017.324. Epub 2017 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验