Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada.
Front Neural Circuits. 2019 May 28;13:40. doi: 10.3389/fncir.2019.00040. eCollection 2019.
The mouse primary visual cortex (V1) has become an important brain area for exploring how neural circuits process information. Optogenetic tools have helped to outline the connectivity of a local V1 circuit comprising excitatory pyramidal neurons and several genetically-defined inhibitory interneuron subtypes that express parvalbumin, somatostatin, or vasoactive intestinal peptide. Optogenetic modulation of individual interneuron subtypes can alter the visual responsiveness of pyramidal neurons with distinct forms of inhibition and disinhibition. However, different interneuron subtypes have potentially opposing actions, and the potency of their effects relative to each other remains unclear. Therefore, in this study we simultaneously optogenetically activated all interneuron subtypes during visual processing to explore whether any single inhibitory effect would predominate. This aggregate interneuron activation consistently inhibited pyramidal neurons in a divisive manner, which was essentially identical to the pattern of inhibition produced by activating parvalbumin-expressing interneurons alone.
小鼠初级视觉皮层(V1)已成为探索神经回路如何处理信息的重要脑区。光遗传学工具帮助描绘了一个局部 V1 回路的连接,该回路包括兴奋性锥体神经元和几种遗传定义的抑制性中间神经元亚型,它们表达钙蛋白、生长抑素或血管活性肠肽。对单个中间神经元亚型进行光遗传学调节可以改变具有不同形式抑制和去抑制的锥体神经元的视觉反应性。然而,不同的中间神经元亚型可能具有相反的作用,它们的作用强度彼此之间尚不清楚。因此,在这项研究中,我们在视觉处理过程中同时光遗传学激活所有中间神经元亚型,以探索是否会出现任何单一的抑制作用占主导地位。这种聚合性中间神经元激活以一种可分的方式一致地抑制锥体神经元,其与单独激活表达钙蛋白的中间神经元产生的抑制模式基本相同。