Karnani Mahesh M, Jackson Jesse, Ayzenshtat Inbal, Hamzehei Sichani Azadeh, Manoocheri Kasra, Kim Samuel, Yuste Rafael
Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, New York 10027
Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, New York 10027.
J Neurosci. 2016 Mar 23;36(12):3471-80. doi: 10.1523/JNEUROSCI.3646-15.2016.
Inhibitory interneurons in the neocortex often connect in a promiscuous and extensive fashion, extending a "blanket of inhibition" on the circuit. This raises the problem of how can excitatory activity propagate in the midst of this widespread inhibition. One solution to this problem could be the vasoactive intestinal peptide (VIP) interneurons, which disinhibit other interneurons. To explore how VIP interneurons affect the local circuits, we use two-photon optogenetics to activate them individually in mouse visual cortex in vivo while measuring their output with two-photon calcium imaging. We find that VIP interneurons have narrow axons and inhibit nearby somatostatin interneurons, which themselves inhibit pyramidal cells. Moreover, via this lateral disinhibition, VIP cells in vivo make local and transient "holes" in the inhibitory blanket extended by SOM cells. VIP interneurons, themselves regulated by neuromodulators, may therefore enable selective patterns of activity to propagate through the cortex, by generating a "spotlight of attention".
Most inhibitory interneurons have axons restricted to a nearby area and target excitatory neighbors indiscriminately, raising the issue of how neuronal activity can propagate through cortical circuits. Vasoactive intestinal peptide-expressing interneurons (VIPs) disinhibit cortical pyramidal cells through inhibition of other inhibitory interneurons, and they have very focused, "narrow" axons. By optogenetically activating single VIPs in live mice while recording the activity of nearby neurons, we find that VIPs break open a hole in blanket inhibition with an effective range of ∼120 μm in lateral cortical space where excitatory activity can propagate.
新皮层中的抑制性中间神经元常常以杂乱且广泛的方式连接,在回路中形成一层“抑制性覆盖层”。这就引发了一个问题,即在这种广泛的抑制作用下,兴奋性活动如何能够传播。解决这个问题的一种可能方式是血管活性肠肽(VIP)中间神经元,它们会解除对其他中间神经元的抑制。为了探究VIP中间神经元如何影响局部回路,我们利用双光子光遗传学技术在活体小鼠视觉皮层中单独激活它们,同时用双光子钙成像技术测量其输出。我们发现,VIP中间神经元具有狭窄的轴突,会抑制附近的生长抑素中间神经元,而后者本身会抑制锥体细胞。此外,通过这种侧向去抑制作用,活体中的VIP细胞在由SOM细胞延伸出的抑制性覆盖层中制造出局部且短暂的“空洞”。因此,本身受神经调质调节的VIP中间神经元,可能通过产生一个“注意力聚光灯”,使选择性的活动模式能够在皮层中传播。
大多数抑制性中间神经元的轴突局限于附近区域,且无差别地靶向兴奋性邻居,这就引发了神经元活动如何能够在皮层回路中传播的问题。表达血管活性肠肽的中间神经元(VIP)通过抑制其他抑制性中间神经元来解除对皮层锥体细胞的抑制,并且它们具有非常集中、“狭窄”的轴突。通过在活体小鼠中光遗传学激活单个VIP,同时记录附近神经元的活动,我们发现VIP在皮层侧向空间中约120μm的有效范围内打破了抑制性覆盖层中的一个空洞,兴奋性活动可以在这个空洞中传播。