Liu Yan-Hua, Jiang Zhou-Ying, Xu Jian-Long
School of Optoelectronic Science and Engineering, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China , Soochow University , Suzhou , Jiangsu 215006 , P. R. China.
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China.
ACS Appl Mater Interfaces. 2019 Jul 10;11(27):24047-24056. doi: 10.1021/acsami.9b05033. Epub 2019 Jun 25.
Flexible transparent electrochemical supercapacitors are critical components for the rapid development of fully flexible transparent electronics; however, typical flexible transparent supercapacitor electrodes store limited energy due to the requirements of transparency. Self-standing core-shell structure metal oxide mesh electrodes with metal oxide as active "shell" and metallic mesh as current collector "core" are efficient for simultaneously achieving high capacity, flexibility, and transparency. In this work, we perform a morphology-controlled electrodeposition of MnO on a self-standing flexible transparent metallic Ni mesh electrode to achieve a high-capacity flexible transparent supercapacitor electrode. Under optimized conditions, the MnO nanosheet-composed flowerlike multiscale microstructure was constructed. The open, loose, and porous MnO multiscale microstructure "shell" and high electrical conductivity of self-standing metallic mesh "core" synergistically enable efficient ionic and electronic transport and meanwhile retain high structural stability. The metal oxide mesh electrode yields an outstanding areal capacitance of 1.15 F/cm at an optical transmittance of 69.4% and excellent cycling stability. The symmetric solid-state supercapacitor device exhibits a high areal capacitance value (78.46 mF/cm), superior cycling life, as well as high optical transmittance and mechanical flexibility, superior to the most reported flexible transparent supercapacitors. This work provides a comprehensive understanding on how to achieve high-capacity flexible transparent supercapacitor electrodes and solid-state devices.
柔性透明电化学超级电容器是全柔性透明电子器件快速发展的关键部件;然而,由于对透明度的要求,典型的柔性透明超级电容器电极存储的能量有限。以金属氧化物为活性“壳”、金属网为集流体“核”的自立式核壳结构金属氧化物网状电极,对于同时实现高容量、柔韧性和透明度是有效的。在这项工作中,我们在自立式柔性透明金属镍网电极上进行了形貌可控的MnO电沉积,以制备高容量柔性透明超级电容器电极。在优化条件下,构建了由MnO纳米片组成的花状多尺度微观结构。开放、疏松和多孔的MnO多尺度微观结构“壳”与自立式金属网“核”的高电导率协同作用,实现了高效的离子和电子传输,同时保持了高结构稳定性。该金属氧化物网状电极在69.4%的光学透过率下具有1.15 F/cm²的出色面积电容和优异的循环稳定性。对称固态超级电容器器件具有高面积电容值(78.46 mF/cm²)、优异的循环寿命以及高光学透过率和机械柔韧性,优于大多数已报道的柔性透明超级电容器。这项工作为如何实现高容量柔性透明超级电容器电极和固态器件提供了全面的理解。