Ann and Robert H. Lurie Children's Hospital of Chicago.
Psychol Serv. 2020 Aug;17(3):343-354. doi: 10.1037/ser0000367. Epub 2019 Jun 13.
Clinically useful and evidence-based mental health assessment requires the identification of strategies that maximize diagnostic accuracy, inform treatment planning, and make efficient use of clinician and patient time and resources. This study uses classification tree analyses to determine whether parent- and child-report instruments, alone or in combination, can accurately predict diagnoses as measured by the Anxiety Disorders Interview Schedule (ADIS). The ADIS, which is the gold-standard semistructured interview for anxiety disorders in children and adolescents, requires formal training and lengthy administration. Data were collected as part of the standard diagnostic assessment process for 201 patients (ages 5 to 17 years) in an urban outpatient psychiatry specialty clinic. Analyses examined 2 models to determine which predictors reached an acceptable level of diagnostic accuracy for generalized anxiety, social anxiety, and separation anxiety disorders. The first model used scores on a parent- and child-report anxiety measure combined with demographic factors, and the second model incorporated a broad-band measure of child psychopathology and a depression measure into the analysis. Although demographic factors did not emerge as accurate predictors in either model, particular measures, either alone or in combination, were able to predict specific ADIS diagnoses in some cases, allowing for the potential streamlining of ADIS administration. These results suggest that a classification-tree analysis lends itself to the construction of simple algorithms that have high clinical utility and may advance the feasibility and utility of evidence-based assessment strategies in real-world practice settings by balancing cost effectiveness, administration demands, and accuracy. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
临床有用且基于证据的心理健康评估需要确定能够最大程度提高诊断准确性、为治疗计划提供信息并有效利用临床医生和患者的时间和资源的策略。本研究使用分类树分析来确定父母和孩子报告的工具,无论是单独使用还是组合使用,是否可以准确预测焦虑障碍访谈量表 (ADIS) 测量的诊断结果。ADIS 是儿童和青少年焦虑障碍的金标准半结构化访谈,需要正式培训和长时间的管理。该数据是作为城市门诊精神病学专科诊所 201 名患者(5 至 17 岁)标准诊断评估过程的一部分收集的。分析检查了 2 个模型,以确定哪些预测因子达到了广泛性焦虑、社交焦虑和分离焦虑障碍的可接受诊断准确性水平。第一个模型使用父母和孩子报告的焦虑量表的分数加上人口统计学因素,第二个模型将儿童精神病理学的宽带测量和抑郁测量纳入分析。尽管在这两个模型中,人口统计学因素都不是准确的预测因子,但在某些情况下,特定的措施,无论是单独使用还是组合使用,都能够预测特定的 ADIS 诊断,从而有可能简化 ADIS 的管理。这些结果表明,分类树分析有助于构建具有高临床实用性的简单算法,并通过平衡成本效益、管理需求和准确性,推进基于证据的评估策略在实际实践环境中的可行性和实用性。