Hecker M, Ullrich V, Fischer C, Meese C O
Faculty of Biology, University of Konstanz, Federal Republic of Germany.
Eur J Biochem. 1987 Nov 16;169(1):113-23. doi: 10.1111/j.1432-1033.1987.tb13587.x.
The metabolism of [1-14C]arachidonic acid by microsomal and purified prostaglandin (PG) H synthase was investigated. HPLC analysis confirmed that arachidonic acid (20:4) was extensively converted into prostaglandin G2 (PGG2) and/or prostaglandin H2 (PGH2) but several minor labelled products were formed in addition. Their formation, mediated by PGH synthase was established by inhibition with aspirin and indomethacin [Hecker, M., Hatzelmann, A. & Ullrich, V. (1987) Biochem. Pharmacol. 36, 851-855]. Upon comparison with authentic reference material these unknown PGH synthase metabolites were identified with respect to chromatographic properties, ultraviolet spectroscopy and mass spectrometry as 11 (R)-hydroperoxy-5Z,8Z,12E,14Z-eicosatetraenoic acid (11-OOH-20:4), 12(S)-hydroperoxy-5Z,8E,10E-heptadecatrienoic acid (OOH-17:3), 12(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (OH-17:3), 15(RS)-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoi c acid (15-OOH-20:4), 15(RS)-hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic acid (15-OH-20:4), 13-hydroxy-5Z,14Z-prostaglandin H2, 15(S)-hydroxy-8-iso-5Z,13E-prostaglandin H2 and 15-oxo-prostaglandin H2. Unlike PGG2 and PGH2, 8-iso-PGH2, 13-hydroxy-PGH2 and 15-oxo-PGH2 failed to induce aggregation of washed human platelets and to form thromboxane upon incubation with homogeneous human platelet thromboxane synthase. In contrast to the formation of OOH-17:3, 15-oxo-PGH2 and OH-17:3 which can be attributed to the heme-catalyzed decomposition of PGG2 and PGH2, 11-OOH-20:4,15-(O)OH-20:4-,8 iso-PGH2 and 13-hydroxy-PGH2 represent potential side products of arachidonic acid conversion into PG endoperoxides. Their formation allows to conclude on PGH synthase mechanism and its intermediates for which an extended reaction scheme is proposed.
研究了微粒体和纯化的前列腺素(PG)H合酶对[1-14C]花生四烯酸的代谢。高效液相色谱分析证实,花生四烯酸(20:4)被广泛转化为前列腺素G2(PGG2)和/或前列腺素H2(PGH2),但此外还形成了几种少量的标记产物。通过阿司匹林和吲哚美辛抑制作用[赫克,M.,哈策尔曼,A. & 乌尔里希,V.(1987年)《生物化学药理学》36卷,851 - 855页]确定这些产物由PGH合酶介导形成。与真实参考物质比较后,根据色谱性质、紫外光谱和质谱鉴定这些未知的PGH合酶代谢产物为11(R)-氢过氧-5Z,8Z,12E,14Z-二十碳四烯酸(11-OOH-20:4)、12(S)-氢过氧-5Z,8E,10E-十七碳三烯酸(OOH-17:3)、12(S)-羟基-5Z,8E,10E-十七碳三烯酸(OH-17:3)、15(RS)-氢过氧-5Z,8Z,11Z,13E-二十碳四烯酸(15-OOH-20:4)、15(RS)-羟基-5Z,8Z,11Z,13E-二十碳四烯酸(15-OH-20:4)、13-羟基-5Z,14Z-前列腺素H2、15(S)-羟基-8-异-5Z,13E-前列腺素H2和15-氧代-前列腺素H2。与PGG2和PGH2不同,8-异-PGH2、13-羟基-PGH2和15-氧代-PGH2在与纯的人血小板血栓素合酶孵育时不能诱导洗涤过的人血小板聚集,也不能形成血栓素。与可归因于PGG2和PGH2血红素催化分解的OOH-17:3、15-氧代-PGH2和OH-17:3的形成相反,11-OOH-20:4、15-(O)OH-20:4-、8异-PGH2和13-羟基-PGH2代表花生四烯酸转化为PG内过氧化物的潜在副产物。它们的形成有助于推断PGH合酶机制及其中间体,为此提出了一个扩展的反应方案。