German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
J Clin Invest. 2019 Jun 13;129(9):3738-3753. doi: 10.1172/JCI127330.
Specific neuronal populations display high vulnerability to pathological processes in Parkinson's disease (PD). The dorsal motor nucleus of the vagus nerve (DMnX) is a primary site of pathological α-synuclein deposition and may play a key role in the spreading of α-synuclein lesions within and outside the CNS. Using in vivo models, we show that cholinergic neurons forming this nucleus are particularly susceptible to oxidative challenges and accumulation of reactive oxidative species (ROS). Targeted α-synuclein overexpression within these neurons triggered an oxidative stress that became significantly more pronounced after exposure to the ROS-generating agent paraquat. A more severe oxidative stress resulted in enhanced production of oxidatively modified forms of α-synuclein, increased α-synuclein aggregation into oligomeric species and marked degeneration of DMnX neurons. Enhanced oxidative stress also affected neuron-to-neuron protein transfer, causing an increased spreading of α-synuclein from the DMnX toward more rostral brain regions. In vitro experiments confirmed a greater propensity of α-synuclein to pass from cell to cell under pro-oxidant conditions, and identified nitrated α-synuclein forms as highly transferable protein species. These findings substantiate the relevance of oxidative injury in PD pathogenetic processes, establish a relationship between oxidative stress and vulnerability to α-synuclein pathology and define a new mechanism, enhanced cell-to-cell α-synuclein transmission, by which oxidative stress could promote PD development and progression.
特定的神经元群体在帕金森病(PD)的病理过程中表现出高度易感性。迷走神经背核(DMnX)是病理性α-突触核蛋白沉积的主要部位,可能在中枢神经系统内外α-突触核蛋白病变的传播中发挥关键作用。使用体内模型,我们表明形成该核的胆碱能神经元特别容易受到氧化应激和活性氧(ROS)积累的影响。在这些神经元中靶向表达α-突触核蛋白会引发氧化应激,而暴露于产生 ROS 的百草枯后,这种应激会变得更加明显。更严重的氧化应激导致氧化修饰形式的α-突触核蛋白的产生增加,α-突触核蛋白聚集成寡聚物的聚集增加,以及 DMnX 神经元的明显退化。增强的氧化应激还会影响神经元之间的蛋白质转移,导致α-突触核蛋白从 DMnX 向更前端的脑区传播增加。体外实验证实了在促氧化剂条件下,α-突触核蛋白从一个细胞转移到另一个细胞的倾向更大,并确定了硝化α-突触核蛋白形式是高度可转移的蛋白质种类。这些发现证实了氧化损伤在 PD 发病机制中的相关性,确立了氧化应激与α-突触核蛋白病理学易感性之间的关系,并定义了一种新的机制,即增强细胞间α-突触核蛋白传递,氧化应激可以通过这种机制促进 PD 的发展和进展。
Neurotherapeutics. 2023-1
Acta Neuropathol. 2017-3
Mol Neurodegener. 2025-7-1
Antioxidants (Basel). 2025-5-9
Neurotherapeutics. 2025-3
Transl Neurodegener. 2025-1-16
NPJ Parkinsons Dis. 2024-12-11
NPJ Parkinsons Dis. 2024-9-27
Nat Rev Neurosci. 2018-10
Nat Commun. 2018-8-27
J Neuropathol Exp Neurol. 2018-6-1
J Clin Invest. 2018-4-30
Nat Neurosci. 2017-11
Gastroenterology. 2017-12