Suppr超能文献

临床预测模型能否评估儿童肺炎的抗生素需求?儿科急诊中的验证研究。

Can clinical prediction models assess antibiotic need in childhood pneumonia? A validation study in paediatric emergency care.

机构信息

Department of General Paediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.

Department of Public Health, Erasmus MC, Rotterdam, The Netherlands.

出版信息

PLoS One. 2019 Jun 13;14(6):e0217570. doi: 10.1371/journal.pone.0217570. eCollection 2019.

Abstract

OBJECTIVES

Pneumonia is the most common bacterial infection in children at the emergency department (ED). Clinical prediction models for childhood pneumonia have been developed (using chest x-ray as their reference standard), but without implementation in clinical practice. Given current insights in the diagnostic limitations of chest x-ray, this study aims to validate these prediction models for a clinical diagnosis of pneumonia, and to explore their potential to guide decisions on antibiotic treatment at the ED.

METHODS

We systematically identified clinical prediction models for childhood pneumonia and assessed their quality. We evaluated the validity of these models in two populations, using a clinical reference standard (1. definite/probable bacterial, 2. bacterial syndrome, 3. unknown bacterial/viral, 4. viral syndrome, 5. definite/probable viral), measuring performance by the ordinal c-statistic (ORC). Validation populations included prospectively collected data of children aged 1 month to 5 years attending the ED of Rotterdam (2012-2013) or Coventry (2005-2006) with fever and cough or dyspnoea.

RESULTS

We identified eight prediction models and could evaluate the validity of seven, with original good performance. In the Dutch population 22/248 (9%) had a bacterial infection, in Coventry 53/301 (17%), antibiotic prescription was 21% and 35% respectively. Three models predicted a higher risk in children with bacterial infections than in those with viral disease (ORC ≥0.55) and could identify children at low risk of bacterial infection.

CONCLUSIONS

Three clinical prediction models for childhood pneumonia could discriminate fairly well between a clinical reference standard of bacterial versus viral infection. However, they all require the measurement of biomarkers, raising questions on the exact target population when implementing these models in clinical practice. Moreover, choosing optimal thresholds to guide antibiotic prescription is challenging and requires careful consideration of potential harms and benefits.

摘要

目的

肺炎是儿童急诊科(ED)最常见的细菌感染。已经开发出了用于儿童肺炎的临床预测模型(以胸部 X 光作为参考标准),但尚未在临床实践中实施。鉴于当前对胸部 X 光诊断局限性的认识,本研究旨在验证这些预测模型对肺炎的临床诊断,并探讨它们在指导 ED 抗生素治疗决策方面的潜力。

方法

我们系统地确定了儿童肺炎的临床预测模型,并评估了它们的质量。我们使用临床参考标准(1. 明确/可能的细菌性,2. 细菌性综合征,3. 未知细菌性/病毒性,4. 病毒性综合征,5. 明确/可能的病毒性),通过有序 c 统计量(ORC)来评估这些模型在两个人群中的有效性。验证人群包括来自鹿特丹(2012-2013 年)或考文垂(2005-2006 年)急诊科的 1 个月至 5 岁发热咳嗽或呼吸困难的儿童前瞻性收集的数据。

结果

我们确定了 8 个预测模型,其中 7 个模型的有效性可以进行评估,原始性能良好。在荷兰人群中,248 例儿童中有 22 例(9%)患有细菌感染,在考文垂有 301 例儿童中有 53 例(17%),抗生素处方分别为 21%和 35%。有 3 个模型预测患有细菌性感染的儿童比患有病毒性疾病的儿童有更高的风险(ORC≥0.55),并且可以识别出患有细菌性感染风险较低的儿童。

结论

有 3 个用于儿童肺炎的临床预测模型可以很好地区分细菌性感染和病毒性感染的临床参考标准。然而,它们都需要测量生物标志物,这引发了在临床实践中实施这些模型时对确切目标人群的质疑。此外,选择最佳阈值来指导抗生素处方是具有挑战性的,需要仔细考虑潜在的危害和收益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bf/6563975/94601c055192/pone.0217570.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验