Suppr超能文献

Actigraphic 检测周期性肢体运动:潜在设备独立算法的开发和验证。概念验证研究。

Actigraphic detection of periodic limb movements: development and validation of a potential device-independent algorithm. A proof of concept study.

机构信息

Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, Canada.

Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.

出版信息

Sleep. 2019 Sep 6;42(9). doi: 10.1093/sleep/zsz117.

Abstract

STUDY OBJECTIVES

We propose a unique device-independent approach to analyze long-term actigraphy signals that can accurately quantify the severity of periodic limb movements in sleep (PLMS).

METHODS

We analyzed 6-8 hr of bilateral ankle actigraphy data for 166 consecutively consenting patients who simultaneously underwent routine clinical polysomnography. Using the proposed algorithm, we extracted 14 time and frequency features to identify PLMS. These features were then used to train a Naïve-Bayes learning tool which permitted classification of mild vs. severe PLMS (i.e. periodic limb movements [PLM] index less than vs. greater than 15 per hr), as well as classification for four PLM severities (i.e. PLM index < 15, between 15 and 29.9, between 30 and 49.9, and ≥50 movements per hour).

RESULTS

Using the proposed signal analysis technique, coupled with a leave-one-out cross-validation method, we obtained a classification accuracy of 89.6%, a sensitivity of 87.9%, and a specificity of 94.1% when classifying a PLM index less than vs. greater than 15 per hr. For the multiclass classification for the four PLM severities, we obtained a classification accuracy of 85.8%, with a sensitivity of 97.6%, and a specificity of 84.8%.

CONCLUSIONS

Our approach to analyzing long-term actigraphy data provides a method that can be used as a screening tool to detect PLMS using actigraphy devices from various manufacturers and will facilitate detection of PLMS in an ambulatory setting.

摘要

研究目的

我们提出了一种独特的设备独立方法来分析长期的活动记录仪信号,该方法可以准确地量化睡眠周期性肢体运动(PLMS)的严重程度。

方法

我们分析了 166 名连续同意的患者的双侧踝部活动记录仪数据,这些患者同时进行了常规临床多导睡眠图检查。使用所提出的算法,我们提取了 14 个时间和频率特征来识别 PLMS。然后,这些特征被用于训练朴素贝叶斯学习工具,该工具允许对轻度与重度 PLMS(即周期性肢体运动[PLM]指数小于或大于 15 次/小时)进行分类,以及对四种 PLM 严重程度(即 PLM 指数<15、15 至 29.9、30 至 49.9 和≥50 次/小时)进行分类。

结果

使用所提出的信号分析技术,结合留一交叉验证方法,我们在分类 PLM 指数小于与大于 15 次/小时时,获得了 89.6%的分类准确率、87.9%的敏感性和 94.1%的特异性。对于四种 PLM 严重程度的多类分类,我们获得了 85.8%的分类准确率,具有 97.6%的敏感性和 84.8%的特异性。

结论

我们分析长期活动记录仪数据的方法提供了一种可以用作筛查工具的方法,使用来自不同制造商的活动记录仪设备来检测 PLMS,并将有助于在非卧床环境中检测 PLMS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验