University of Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France; CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Portugal.
University of Georgia, Biomedical Engineering, Athens, GA 30602, United States.
Carbohydr Polym. 2019 Sep 15;220:71-78. doi: 10.1016/j.carbpol.2019.05.009. Epub 2019 May 13.
In this work, we report a convenient method of grafting non-leachable bioactive amine functions onto the surface of bacterial cellulose (BC) nanofibrils, via a simple silylation treatment in water. Two different silylation protocols, involving different solvents and post-treatments were envisaged and compared, using 3-aminopropyl-trimethoxysilane (APS) and (2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPS) as silylating agents. In aqueous and controlled conditions, water-leaching resistant amino functions could be successfully introduced into BC, via a simple freeze-drying process. The silylated material remained highly porous, hygroscopic and displayed sufficient thermal stability to support the sterilization treatments generally required in medical applications. The impact of the silylation treatment on the intrinsic anti-bacterial properties of BC was investigated against the growth of Escherichia coli and Staphylococcus aureus. The results obtained after the in vitro studies revealed a significant growth reduction of S. aureus within the material.
在这项工作中,我们报告了一种将非浸出生物活性胺官能团接枝到细菌纤维素 (BC) 纳米纤维表面的简便方法,该方法通过在水中进行简单的硅烷化处理来实现。我们设想了两种不同的硅烷化方案,分别使用 3-氨丙基三甲氧基硅烷 (APS) 和 (2-氨乙基)-3-氨丙基三甲氧基硅烷 (AEAPS) 作为硅烷化试剂,使用不同的溶剂和后处理方法进行了比较。在水相和控制条件下,通过简单的冷冻干燥工艺,可以将水浸出性的耐氨基官能团成功引入 BC。硅烷化材料仍然保持高度多孔、高吸湿性,并且具有足够的热稳定性,能够支持医疗应用中通常需要的灭菌处理。我们还研究了硅烷化处理对 BC 固有抗菌性能的影响,以评估其对大肠杆菌和金黄色葡萄球菌生长的抑制作用。体外研究的结果表明,金黄色葡萄球菌在材料内的生长显著减少。