Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology , Mayo Clinic , Rochester , Minnesota 55905 , United States.
Department of Biology , Johns Hopkins University , Baltimore , Maryland 21218 , United States.
Biochemistry. 2019 Jul 2;58(26):2875-2882. doi: 10.1021/acs.biochem.9b00389. Epub 2019 Jun 19.
In the absence of arabinose, the dimeric Escherichia coli regulatory protein of the l-arabinose operon, AraC, represses expression by looping the DNA between distant half-sites. Binding of arabinose to the dimerization domains forces AraC to preferentially bind two adjacent DNA half-sites, which stimulates RNA polymerase transcription of the araBAD catabolism genes. Prior genetic and biochemical studies hypothesized that arabinose allosterically induces a helix-coil transition of a linker between the dimerization and DNA binding domains that switches the AraC conformation to an inducing state [Brown, M. J., and Schleif, R. F. (2019) Biochemistry, preceding paper in this issue (DOI: 10.1021/acs.biochem.9b00234)]. To test this hypothesis, hydrogen-deuterium exchange mass spectrometry was utilized to identify structural regions involved in the conformational activation of AraC by arabinose. Comparison of the hydrogen-deuterium exchange kinetics of individual dimeric dimerization domains and the full-length dimeric AraC protein in the presence and absence of arabinose reveals a prominent arabinose-induced destabilization of the amide hydrogen-bonded structure of linker residues (I and N). This destabilization is demonstrated to result from an increased probability to form a helix capping motif at the C-terminal end of the dimerizing α-helix of the dimerization domain that preceeds the interdomain linker. These conformational changes could allow for quaternary repositioning of the DNA binding domains required for induction of the araBAD promoter through rotation of peptide backbone dihedral angles of just a couple of residues. Subtle changes in exchange rates are also visible around the arabinose binding pocket and in the DNA binding domain.
在阿拉伯糖不存在的情况下,大肠杆菌 l-阿拉伯糖操纵子的二聚体调节蛋白 AraC 通过在远距离半位点之间形成 DNA 环来抑制基因表达。阿拉伯糖与二聚化结构域的结合迫使 AraC 优先结合两个相邻的 DNA 半位点,从而刺激 RNA 聚合酶转录 araBAD 分解代谢基因。先前的遗传和生化研究假设,阿拉伯糖别构诱导二聚化和 DNA 结合结构域之间的连接区发生螺旋-卷曲转变,从而将 AraC 构象转换为诱导状态[Brown,M. J.和 Schleif,R. F.(2019)生物化学,本期专题论文(DOI:10.1021/acs.biochem.9b00234)]。为了验证这一假设,利用氢氘交换质谱法鉴定了 AraC 被阿拉伯糖构象激活所涉及的结构区域。比较单个二聚化结构域和全长二聚体 AraC 蛋白在有或没有阿拉伯糖存在时的氢氘交换动力学,揭示了阿拉伯糖诱导的连接区残基(I 和 N)酰胺氢键结构的显著不稳定性。这种不稳定性是由于在二聚化结构域的二聚化α-螺旋的 C 端末端形成螺旋帽结构的可能性增加所致,该结构位于二聚体之间的连接区之前。这些构象变化可能允许 DNA 结合结构域的四级重定位,从而通过几个残基的肽骨架二面角的旋转来诱导 araBAD 启动子的诱导。在阿拉伯糖结合口袋和 DNA 结合结构域周围也可以看到交换速率的细微变化。