Sensory and Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
Cell Mol Life Sci. 2019 Dec;76(23):4795-4809. doi: 10.1007/s00018-019-03188-0. Epub 2019 Jun 14.
Fibrillin microfibrils are ubiquitous elements of extracellular matrix assemblies that play crucial roles in regulating the bioavailability of growth factors of the transforming growth factor beta superfamily. Recently, several "a disintegrin and metalloproteinase with thrombospondin motifs" (ADAMTS) proteins were shown to regulate fibrillin microfibril function. Among them, ADAMTS17 is the causative gene of Weill-Marchesani syndrome (WMS) and Weill-Marchesani-like syndrome, of which common symptoms are ectopia lentis and short stature. ADAMTS17 has also been linked to height variation in humans; however, the molecular mechanisms whereby ADAMTS17 regulates skeletal growth remain unknown. Here, we generated Adamts17-/- mice to examine the role of Adamts17 in skeletogenesis. Adamts17-/- mice recapitulated WMS, showing shorter long bones, brachydactyly, and thick skin. The hypertrophic zone of the growth plate in Adamts17-/- mice was shortened, with enhanced fibrillin-2 deposition, suggesting increased incorporation of fibrillin-2 into microfibrils. Comprehensive gene expression analysis of growth plates using laser microdissection and RNA sequencing indicated alteration of the bone morphogenetic protein (BMP) signaling pathway after Adamts17 knockout. Consistent with this, phospho-Smad1 levels were downregulated in the hypertrophic zone of the growth plate and in Adamts17-/- primary chondrocytes. Delayed terminal differentiation of Adamts17-/- chondrocytes, observed both in primary chondrocyte and primordial metatarsal cultures, and was prevented by BMP treatment. Our data indicated that Adamts17 is involved in skeletal formation by modulating BMP-Smad1/5/8 pathway, possibly through inhibiting the incorporation of fibrillin-2 into microfibrils. Our findings will contribute to further understanding of disease mechanisms and will facilitate the development of therapeutic interventions for WMS.
纤维连接蛋白微纤维是细胞外基质组装的普遍元素,在调节转化生长因子β超家族生长因子的生物利用度方面发挥着关键作用。最近,几种“解整合素和金属蛋白酶与凝血酶反应蛋白 1 型(ADAMTS)”蛋白被证明可以调节纤维连接蛋白微纤维的功能。其中,ADAMTS17 是 Weill-Marchesani 综合征(WMS)和 Weill-Marchesani 样综合征的致病基因,其常见症状为晶状体异位和身材矮小。ADAMTS17 也与人类身高的变化有关;然而,ADAMTS17 调节骨骼生长的分子机制尚不清楚。在这里,我们生成了 Adamts17-/- 小鼠来研究 Adamts17 在骨骼发生中的作用。Adamts17-/- 小鼠重现了 WMS,表现出较短的长骨、短指畸形和皮肤增厚。Adamts17-/- 小鼠生长板的肥大区缩短,纤维连接蛋白-2 沉积增加,表明纤维连接蛋白-2 更多地掺入微纤维。使用激光微切割和 RNA 测序对生长板进行的综合基因表达分析表明,Adamts17 敲除后骨形态发生蛋白(BMP)信号通路发生改变。与此一致,生长板肥大区和 Adamts17-/- 原代软骨细胞中的磷酸化 Smad1 水平下调。在原发性软骨细胞和原始跖骨培养物中观察到 Adamts17-/- 软骨细胞的终末分化延迟,BMP 处理可防止这种情况。我们的数据表明,Adamts17 通过调节 BMP-Smad1/5/8 通路参与骨骼形成,可能通过抑制纤维连接蛋白-2 掺入微纤维。我们的发现将有助于进一步了解疾病机制,并为 WMS 的治疗干预措施的发展提供帮助。