Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA.
Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
Brain Struct Funct. 2019 Sep;224(7):2311-2324. doi: 10.1007/s00429-019-01903-y. Epub 2019 Jun 14.
Despite evidence that morphine-related pathologies reflect adaptations in NAc glutamate signaling, substantial gaps in basic information remain. The current study examines the impact of non-contingent acute, repeated, and withdrawal-inducing morphine dosing regimens on glutamate transmission in D1- or D2-MSNs in the nucleus accumbens shell (NAcSh) and core (NAcC) sub-regions in hopes of identifying excitatory plasticity that may contribute to unique facets of opioid addiction-related behavior. Following an acute morphine injection (10 mg/kg), average miniature excitatory postsynaptic current (mEPSC) amplitude mediated by AMPA-type glutamate receptors was increased at D1-MSNs in the both the NAcShl and NAcC, whereas only the frequency of events was elevated at D2-MSNs in the NAcSh. In contrast, spontaneous somatic withdrawal induced by escalating dose of repeated morphine twice per day (20, 40, 60, 80, 100 mg/kg) enhanced mEPSC frequency specifically at D2-MSNs in the NAcSh. Similar to previous findings, excitatory drive was elevated at NAcSh D1-MSNs after 10-14 days home cage abstinence. Following abstinence, an acute drug re-exposure produced a rapid and enduring endocytosis of GluA2-containing AMPARs at D1-MSNs in the shell, that when blocked by an intra-NAc shell infusion of the Tat-GluA2 peptide, increased reinstatement of morphine place preference-a phenomenon distinctly different than effects previously found with cocaine. The present study is the first to directly identify unique circuit specific adaptations in NAc glutamate synaptic transmission associated with morphine-related acute reward and somatic withdrawal as well as post-abstinence short-term plasticity. Moreover, while differing classes of abused drugs (i.e., psychostimulants and opioids) produce seemingly similar bidirectional plasticity in the NAc following drug re-exposure, our findings indicate this plasticity has distinct behavioral consequences.
尽管有证据表明吗啡相关病变反映了 NAc 谷氨酸信号的适应性,但基本信息仍存在很大差距。本研究探讨了非条件性急性、重复和诱导戒断的吗啡给药方案对伏隔核壳(NAcSh)和核(NAcC)亚区中 D1-或 D2-MSN 中谷氨酸传递的影响,希望确定可能导致阿片类药物成瘾相关行为独特方面的兴奋性可塑性。在单次吗啡注射(10mg/kg)后,NAcShl 和 NAcC 中的 D1-MSN 介导的 AMPA 型谷氨酸受体的平均微小兴奋性突触后电流(mEPSC)幅度增加,而只有 NAcSh 中的 D2-MSN 事件频率升高。相比之下,每天两次递增剂量重复吗啡(20、40、60、80、100mg/kg)诱导的自发性躯体戒断仅增强了 NAcSh 中 D2-MSN 的 mEPSC 频率。与之前的发现相似,在 10-14 天的笼内戒断后,NAcSh 的 D1-MSN 的兴奋性驱动增加。戒断后,急性药物再暴露会迅速且持久地导致壳内 D1-MSN 中含 GluA2 的 AMPAR 内吞,当通过 NAc 壳内输注 Tat-GluA2 肽阻断时,会增加吗啡位置偏好的复燃——这一现象与可卡因先前发现的效应明显不同。本研究首次直接确定了与吗啡相关急性奖赏和躯体戒断以及戒断后短期可塑性相关的 NAc 谷氨酸突触传递的独特回路特异性适应性。此外,虽然滥用药物的不同类别(即精神兴奋剂和阿片类药物)在药物再暴露后在 NAc 中产生看似相似的双向可塑性,但我们的发现表明这种可塑性具有不同的行为后果。