Suppr超能文献

多触须感受野生成的前馈机制在大鼠皮层桶状结构模型中的分析。

Analysis of feedforward mechanisms of multiwhisker receptive field generation in a model of the rat barrel cortex.

机构信息

Department of Mathematics, 200 Ukrop Way, Jones Hall, College of William and Mary, Williamsburg, VA 23187, USA.

出版信息

J Theor Biol. 2019 Sep 21;477:51-62. doi: 10.1016/j.jtbi.2019.06.008. Epub 2019 Jun 12.

Abstract

There is substantial anatomical segregation in the organization of the rodent barrel system - each whisker on the mystacial pad sends input to TC cells within a dedicated thalamic barreloid, which in turn innervates a corresponding cortical barrel, and RS cells within a barrel respond primarily to deflections of the corresponding whisker at the beginning of the dedicated transmission line (the principal whisker, PW). However, it is also well-established that barrel cells exhibit multiwhisker receptive fields (RFs), and display lower amplitude, longer latency responses to deflections of non-PWs (or adjacent whiskers, AWs). There is considerable controversy regarding the origin of such multiwhisker RFs; three possibilities include: (i) TC cells within a barreloid respond to multiple whiskers, and barrel RS cells simply inherit multiwhisker responses from their aligned barreloid; (ii) TC cells respond only to the PW, but individual barreloids innervate multiple barrels; (iii) multiwhisker responses of barrel cells arise from lateral corticocortical (barrel-to-barrel) synaptic transmission. Ablation studies attempting to pinpoint the source of RS cell AW responses are often contradictory (though experimental work tends to suggest possibilities (i) or (iii) to be most plausible), and hence it is important to carefully evaluate these hypotheses in terms of available physiological data on barreloid and barrel response dynamics. In this work, I employ a biologically detailed model of the rat barrel cortex to evaluate possibility (i), and I show that, within the model, hypothesis (i) is capable of explaining a broad range of the available physiological data on responses to single (PW or AW) deflections and paired whisker deflections (AW deflection followed by PW deflection), as well as the dependence of such responses on the angular direction of whisker deflection. In particular, the model shows that barrel RS cells can exhibit AW direction tuning despite the fact that barreloid to barrel wiring has no systematic dependence on the AW direction preference of TC cells. Future modeling work will examine the other possibilities for the generation of multiwhisker RS cell RFs, and compare and contrast the different possible mechanisms within the context of available experimental data.

摘要

在啮齿动物桶状系统的组织中存在大量的解剖学分隔——触须垫上的每一根触须都向特定的丘脑桶状区的 TC 细胞发送输入,而这些细胞又会向相应的皮层桶状区发出神经冲动,并且桶状区的 RS 细胞主要对特定传输线起始处的相应触须的偏转而产生反应(主要触须,PW)。然而,桶状细胞表现出多触须感受野(RFs)这一事实也已得到充分证实,并且它们对非 PW(或相邻触须,AW)的偏转而产生的反应具有较低的振幅和较长的潜伏期。对于这种多触须 RFs 的起源存在很大的争议;三种可能性包括:(i)桶状区的 TC 细胞对多个触须产生反应,而桶状区的 RS 细胞只是从与其对齐的桶状区继承了多触须反应;(ii)TC 细胞仅对 PW 产生反应,但单个桶状区支配多个桶状区;(iii)桶状细胞的多触须反应来自皮质间的横向(桶状区之间)突触传递。试图确定 RS 细胞 AW 反应来源的消融研究往往存在矛盾(尽管实验工作倾向于表明可能性(i)或(iii)最有可能),因此,根据可用的关于桶状区和桶状区反应动力学的生理数据,仔细评估这些假设非常重要。在这项工作中,我使用了大鼠桶状皮层的详细生物模型来评估可能性(i),并且我表明,在该模型中,假设(i)能够解释大量关于对单个(PW 或 AW)偏转而产生的反应以及成对触须偏转而产生的反应(AW 偏转而接着 PW 偏转)的可用生理数据,以及这些反应对触须偏转角的依赖性。特别地,该模型表明,尽管桶状区到桶状区的布线与 TC 细胞的 AW 方向偏好没有系统的依赖关系,但桶状区的 RS 细胞仍然可以表现出 AW 方向调谐。未来的建模工作将研究生成多触须 RS 细胞 RFs 的其他可能性,并在可用实验数据的背景下比较和对比不同的可能机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验