Suppr超能文献

利用当地监测数据预测坦桑尼亚沿海捕鱼社区的特征。

Predicting coastal fishing community characteristics in Tanzania using local monitoring data.

机构信息

Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA; Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial University of Newfoundland, P.O. Box 4920, St. John's, NL, A1C 5R3, Canada.

Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.

出版信息

J Environ Manage. 2019 Sep 15;246:514-525. doi: 10.1016/j.jenvman.2019.05.082. Epub 2019 Jun 12.

Abstract

Small-scale marine fisheries in Tanzania provide the main source of subsistence for coastal communities, yet due to poor management, they have been overexploited for decades. These coastal fisheries have historically been described as homogeneous in gear-use and fish community makeup. Yet, regional and local variability in the characteristics of these fishing communities was recently identified with community-based fisheries-dependent data. We proposed a flexible modeling approach that incorporated local monitoring data with spatial data to predict the spatial characteristics of the marine fisheries in Tanzania. The spatial models identified relationships between fishery landings and coral reef, seagrass, and mangrove habitat patch attributes, along with fisher density and a hydrologic index. Furthermore, the predicted spatial characteristics matched previously reported fishery characteristics in both districts. The maps developed by our modeling process provide a means for stakeholders and managers to understand the spatial distribution of their fisheries and in turn, focus on explicitly managing what, how, and where fishers operate. Overall, the flexible modeling approach developed here may act as a first step in incorporating local monitoring data into co-management frameworks, which may promote more sustainable fisheries management strategies in data-poor regions.

摘要

坦桑尼亚小规模的海洋渔业为沿海社区提供了主要的生计来源,但由于管理不善,这些渔业资源已经被过度捕捞了几十年。这些沿海渔业在渔具使用和鱼类群落组成方面历史上被描述为同质化。然而,最近利用基于社区的渔业相关数据,确定了这些渔业社区在区域和地方上的特征存在差异。我们提出了一种灵活的建模方法,该方法将本地监测数据与空间数据相结合,以预测坦桑尼亚海洋渔业的空间特征。空间模型确定了渔业捕捞量与珊瑚礁、海草和红树林生境斑块属性以及渔业密度和水文学指数之间的关系。此外,预测的空间特征与两个地区之前报告的渔业特征相吻合。我们的建模过程所开发的地图为利益相关者和管理者提供了一种手段,使他们能够了解其渔业的空间分布,并相应地专注于明确管理渔民的作业方式、地点和种类。总的来说,这里开发的灵活建模方法可以作为将本地监测数据纳入共同管理框架的第一步,这可能会促进在数据匮乏的地区实施更可持续的渔业管理策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验