Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA.
Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
Redox Biol. 2019 Sep;26:101235. doi: 10.1016/j.redox.2019.101235. Epub 2019 Jun 5.
Glutathione (GSH), the most abundant vertebrate endogenous redox buffer, plays key roles in organogenesis and embryonic development, however, organ-specific GSH utilization during development remains understudied. Monochlorobimane (MCB), a dye conjugated with GSH by glutathione-s-transferase (GST) to form a fluorescent adduct, was used to visualize organ-specific GSH utilization in live developing zebrafish (Danio rerio) embryos. Embryos were incubated in 20 μM MCB for 1 h and imaged on an epifluorescence microscope. GSH conjugation with MCB was high during early organogenesis, decreasing as embryos aged. The heart had fluorescence 21-fold above autofluorescence at 24 hpf, dropping to 8.5-fold by 48 hpf; this increased again by 72 hpf to 23.5-fold, and stayed high till 96 hpf (18-fold). The brain had lower fluorescence (10-fold) at 24 and 48 hpf, steadily increasing to 30-fold by 96 hpf. The sensitivity and specificity of MCB staining was then tested with known GSH modulators. A 10-min treatment at 48 hpf with 750 μM tert-butylhydroperoxide, caused organ-specific reductions in staining, with the heart losing 30% fluorescence, and, the brain ventricle losing 47% fluorescence. A 24 h treatment from 24-48 hpf with 100 μM of N-Acetylcysteine (NAC) resulted in significantly increased fluorescence, with the brain ventricle and heart showing 312% and 240% increases respectively, these were abolished upon co-treatment with 5 μM BSO, an inhibitor of the enzyme that utilizes NAC to synthesize GSH. A 60 min 100 μM treatment with ethacrynic acid, a specific GST inhibitor, caused 30% reduction in fluorescence across all measured structures. MCB staining was then applied to test for GSH disruptions caused by the toxicants perfluorooctanesulfonic acid and mono-(2-ethyl-hexyl)phthalate; MCB fluorescence responded in a dose, structure and age-dependent manner. MCB staining is a robust, sensitive method to detect spatiotemporal changes in GSH utilization, and, can be applied to identify sensitive target tissues of toxicants.
谷胱甘肽 (GSH) 是脊椎动物中最丰富的内源性氧化还原缓冲剂,在器官发生和胚胎发育中发挥关键作用,然而,发育过程中器官特异性 GSH 的利用仍研究不足。单氯代丁二酰亚胺 (MCB) 是一种通过谷胱甘肽-S-转移酶 (GST) 与 GSH 缀合形成荧光加合物的染料,用于在活体发育中的斑马鱼 (Danio rerio) 胚胎中可视化器官特异性 GSH 利用。胚胎在 20μM MCB 中孵育 1 小时,并在明场显微镜下成像。在早期器官发生期间,GSH 与 MCB 的缀合率很高,随着胚胎的衰老而降低。在 24 hpf 时,心脏的荧光比自发荧光高 21 倍,在 48 hpf 时降至 8.5 倍;在 72 hpf 时再次增加到 23.5 倍,并在 96 hpf 时保持高位(18 倍)。在 24 和 48 hpf 时,大脑的荧光较低(10 倍),并稳定增加到 96 hpf 时的 30 倍。然后用已知的 GSH 调节剂测试 MCB 染色的灵敏度和特异性。在 48 hpf 时用 750μM 叔丁基过氧化物处理 10 分钟,导致器官特异性染色减少,心脏失去 30%的荧光,而脑室内腔失去 47%的荧光。从 24 小时至 48 小时用 100μM N-乙酰半胱氨酸 (NAC) 处理 24 小时,导致荧光显著增加,脑室内腔和心脏分别增加 312%和 240%,当与 5μM BSO 共同处理时,这些增加被消除,BSO 是一种利用 NAC 合成 GSH 的酶的抑制剂。用特异性 GST 抑制剂乙叉羟酸处理 60 分钟 100μM,导致所有测量结构的荧光减少 30%。然后将 MCB 染色应用于测试有毒物质全氟辛烷磺酸和邻苯二甲酸单-(2-乙基己基)酯引起的 GSH 破坏;MCB 荧光以剂量、结构和年龄依赖的方式做出响应。MCB 染色是一种检测 GSH 利用时空变化的强大、敏感的方法,并可用于鉴定有毒物质的敏感靶组织。