Marino Emanuele, Balazs Daniel M, Crisp Ryan W, Hermida-Merino Daniel, Loi Maria A, Kodger Thomas E, Schall Peter
Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
J Phys Chem C Nanomater Interfaces. 2019 Jun 6;123(22):13451-13457. doi: 10.1021/acs.jpcc.9b02033. Epub 2019 May 8.
The assembly of colloidal quantum dots (QDs) into dense superstructures holds great promise for the development of novel optoelectronic devices. Several assembly techniques have been explored; however, achieving direct and precise control over the interparticle potential that controls the assembly has proven to be challenging. Here, we exploit the application of critical Casimir forces to drive the growth of QDs into superstructures. We show that the exquisite temperature-dependence of the critical Casimir potential offers new opportunities to control the assembly process and morphology of the resulting QD superstructures. The direct assembly control allows us to elucidate the relation between structural, optical, and conductive properties of the critical Casimir-grown QD superstructures. We find that the choice of the temperature setting the interparticle potential plays a central role in maximizing charge percolation across QD thin-films. These results open up new directions for controlling the assembly of nanostructures and their optoelectronic properties.
将胶体量子点(QDs)组装成致密的超结构对于新型光电器件的开发具有巨大的前景。已经探索了几种组装技术;然而,事实证明,要对控制组装的粒子间势实现直接和精确的控制具有挑战性。在这里,我们利用临界卡西米尔力的应用来驱动量子点生长成超结构。我们表明,临界卡西米尔势对温度的精确依赖性为控制组装过程和所得量子点超结构的形态提供了新的机会。直接的组装控制使我们能够阐明临界卡西米尔生长的量子点超结构的结构、光学和导电性质之间的关系。我们发现,设定粒子间势的温度选择在使电荷在量子点薄膜中渗流最大化方面起着核心作用。这些结果为控制纳米结构的组装及其光电子性质开辟了新的方向。