Chem Rev. 2021 Mar 10;121(5):3186-3233. doi: 10.1021/acs.chemrev.0c00831. Epub 2020 Dec 29.
Colloidal quantum dots (QDs) are nanoscale semiconductor crystals with surface ligands that enable their dispersion in solvents. Quantum confinement effects facilitate wave function engineering to sculpt the spatial distribution of charge and spin states and thus the energy and dynamics of QD optical transitions. Colloidal QDs can be integrated in devices using solution-based assembly methods to position single QDs and to create ordered QD arrays. Here, we describe the synthesis, assembly, and photophysical properties of colloidal QDs that have captured scientific imagination and have been harnessed in optical applications. We focus especially on the current understanding of their quantum coherent effects and opportunities to exploit QDs as platforms for quantum information science. Freedom in QD design to isolate and control the quantum mechanical properties of charge, spin, and light presents various approaches to create systems with robust, addressable quantum states. We consider the attributes of QDs for optically addressable qubits in emerging quantum computation, sensing, simulation, and communication technologies, e.g., as robust sources of indistinguishable, single photons that can be integrated into photonic structures to amplify, direct, and tune their emission or as hosts for isolated, coherent spin states that can be coupled to light or to other spins in QD arrays.
胶体量子点(QDs)是具有表面配体的纳米级半导体晶体,使其能够在溶剂中分散。量子限制效应促进了波函数工程,从而可以塑造电荷和自旋态的空间分布,进而控制 QD 光学跃迁的能量和动力学。胶体 QD 可以通过基于溶液的组装方法集成到器件中,以定位单个 QD 并创建有序的 QD 阵列。在这里,我们描述了胶体 QD 的合成、组装和光物理性质,这些性质引起了科学界的关注,并在光学应用中得到了利用。我们特别关注当前对其量子相干效应的理解以及利用 QD 作为量子信息科学平台的机会。在 QD 设计中,我们可以自由地隔离和控制电荷、自旋和光的量子力学性质,从而为创建具有稳健、可寻址量子态的系统提供了各种方法。我们考虑了 QD 在新兴量子计算、传感、模拟和通信技术中作为可光寻址量子位的属性,例如作为不可分辨的、单光子的稳健源,这些单光子可以集成到光子结构中以放大、引导和调整其发射,或者作为孤立、相干自旋态的宿主,这些自旋态可以与光或 QD 阵列中的其他自旋耦合。