Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States of America.
Cardiology Division, Emory University School of Medicine, Atlanta, GA, United States of America.
PLoS One. 2019 Jun 17;14(6):e0217217. doi: 10.1371/journal.pone.0217217. eCollection 2019.
BACKGROUND: Sleep disordered breathing manifested as sleep apnea (SA) is prevalent in the general population, and while it is associated with increased morbidity and mortality risk in some patient populations, it remains under-diagnosed. The objective of this study was to assess the accuracy of respiration-rate (RR) and tidal-volume (TV) estimation algorithms, from body-surface ECG signals, using a smartphone based ambulatory respiration monitoring system (cvrPhone). METHODS: Twelve lead ECG signals were collected using the cvrPhone from anesthetized and mechanically ventilated swine (n = 9). During ECG data acquisition, the mechanical ventilator tidal-volume (TV) was varied from 250 to 0 to 750 to 0 to 500 to 0 to 750 ml at respiratory rates (RR) of 6 and 14 breaths/min, respectively, and the RR and TV values were estimated from the ECG signals using custom algorithms. RESULTS: TV estimations from any two different TV settings showed statistically significant difference (p < 0.01) regardless of the RR. RRs were estimated to be 6.1±1.1 and 14.0±0.2 breaths/min at 6 and 14 breaths/min, respectively (when 250, 500 and 750 ml TV settings were combined). During apnea, the estimated TV and RR values were 11.7±54.9 ml and 0.0±3.5 breaths/min, which were significantly different (p<0.05) than TV and RR values during non-apnea breathing. In addition, the time delay from the apnea onset to the first apnea detection was 8.6±6.7 and 7.0±3.2 seconds for TV and RR respectively. CONCLUSIONS: We have demonstrated that apnea can reliably be detected using ECG-derived RR and TV algorithms. These results support the concept that our algorithms can be utilized to detect SA in conjunction with ECG monitoring.
背景:睡眠呼吸障碍表现为睡眠呼吸暂停(SA),在普通人群中很常见,尽管在某些患者群体中与发病率和死亡率增加相关,但仍未得到充分诊断。本研究的目的是评估基于智能手机的动态呼吸监测系统(cvrPhone)从体表心电图信号中估算呼吸率(RR)和潮气量(TV)的准确性。
方法:使用 cvrPhone 从麻醉和机械通气的猪中采集 12 导联心电图信号(n=9)。在 ECG 数据采集期间,分别以 6 和 14 次/分钟的呼吸率(RR)将机械通气的潮气量(TV)从 250 至 0 至 750 至 0 至 500 至 0 至 750 ml 变化,然后使用定制算法从 ECG 信号中估算 RR 和 TV 值。
结果:无论 RR 如何,来自任何两个不同 TV 设置的 TV 估算均显示出统计学上的显著差异(p<0.01)。在 6 和 14 次/分钟时,RR 分别估计为 6.1±1.1 和 14.0±0.2 次/分钟(当 250、500 和 750 ml TV 设置组合时)。在呼吸暂停期间,估算的 TV 和 RR 值分别为 11.7±54.9 ml 和 0.0±3.5 次/分钟,与非呼吸暂停呼吸期间的 TV 和 RR 值有显著差异(p<0.05)。此外,从呼吸暂停开始到第一次检测到呼吸暂停的时间延迟分别为 TV 和 RR 的 8.6±6.7 和 7.0±3.2 秒。
结论:我们已经证明,使用 ECG 衍生的 RR 和 TV 算法可以可靠地检测到呼吸暂停。这些结果支持这样的概念,即我们的算法可用于与 ECG 监测结合检测 SA。
Am J Physiol Heart Circ Physiol. 2014-8-1
IEEE J Biomed Health Inform. 2017-5
J Electrocardiol. 2014
Pneumologie. 1989-11
Comput Methods Programs Biomed. 2019-5-8
Eur Heart J Digit Health. 2021-6-28
J Am Heart Assoc. 2021-6
Sensors (Basel). 2020-11-18
J Am Coll Cardiol. 2020-4-7
Pacing Clin Electrophysiol. 2018-5
Circulation. 2016-10-18
IEEE J Biomed Health Inform. 2017-3
Europace. 2016-2-3
Appl Physiol Nutr Metab. 2015-10
Am J Physiol Heart Circ Physiol. 2014-8-1
Am J Physiol Heart Circ Physiol. 2014-8-1