文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于智能手机的系统(cvrphone)在准确确定心电图信号中的呼吸暂停事件方面的效用。

Utility of a smartphone based system (cvrphone) to accurately determine apneic events from electrocardiographic signals.

机构信息

Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States of America.

Cardiology Division, Emory University School of Medicine, Atlanta, GA, United States of America.

出版信息

PLoS One. 2019 Jun 17;14(6):e0217217. doi: 10.1371/journal.pone.0217217. eCollection 2019.


DOI:10.1371/journal.pone.0217217
PMID:31206522
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6576766/
Abstract

BACKGROUND: Sleep disordered breathing manifested as sleep apnea (SA) is prevalent in the general population, and while it is associated with increased morbidity and mortality risk in some patient populations, it remains under-diagnosed. The objective of this study was to assess the accuracy of respiration-rate (RR) and tidal-volume (TV) estimation algorithms, from body-surface ECG signals, using a smartphone based ambulatory respiration monitoring system (cvrPhone). METHODS: Twelve lead ECG signals were collected using the cvrPhone from anesthetized and mechanically ventilated swine (n = 9). During ECG data acquisition, the mechanical ventilator tidal-volume (TV) was varied from 250 to 0 to 750 to 0 to 500 to 0 to 750 ml at respiratory rates (RR) of 6 and 14 breaths/min, respectively, and the RR and TV values were estimated from the ECG signals using custom algorithms. RESULTS: TV estimations from any two different TV settings showed statistically significant difference (p < 0.01) regardless of the RR. RRs were estimated to be 6.1±1.1 and 14.0±0.2 breaths/min at 6 and 14 breaths/min, respectively (when 250, 500 and 750 ml TV settings were combined). During apnea, the estimated TV and RR values were 11.7±54.9 ml and 0.0±3.5 breaths/min, which were significantly different (p<0.05) than TV and RR values during non-apnea breathing. In addition, the time delay from the apnea onset to the first apnea detection was 8.6±6.7 and 7.0±3.2 seconds for TV and RR respectively. CONCLUSIONS: We have demonstrated that apnea can reliably be detected using ECG-derived RR and TV algorithms. These results support the concept that our algorithms can be utilized to detect SA in conjunction with ECG monitoring.

摘要

背景:睡眠呼吸障碍表现为睡眠呼吸暂停(SA),在普通人群中很常见,尽管在某些患者群体中与发病率和死亡率增加相关,但仍未得到充分诊断。本研究的目的是评估基于智能手机的动态呼吸监测系统(cvrPhone)从体表心电图信号中估算呼吸率(RR)和潮气量(TV)的准确性。

方法:使用 cvrPhone 从麻醉和机械通气的猪中采集 12 导联心电图信号(n=9)。在 ECG 数据采集期间,分别以 6 和 14 次/分钟的呼吸率(RR)将机械通气的潮气量(TV)从 250 至 0 至 750 至 0 至 500 至 0 至 750 ml 变化,然后使用定制算法从 ECG 信号中估算 RR 和 TV 值。

结果:无论 RR 如何,来自任何两个不同 TV 设置的 TV 估算均显示出统计学上的显著差异(p<0.01)。在 6 和 14 次/分钟时,RR 分别估计为 6.1±1.1 和 14.0±0.2 次/分钟(当 250、500 和 750 ml TV 设置组合时)。在呼吸暂停期间,估算的 TV 和 RR 值分别为 11.7±54.9 ml 和 0.0±3.5 次/分钟,与非呼吸暂停呼吸期间的 TV 和 RR 值有显著差异(p<0.05)。此外,从呼吸暂停开始到第一次检测到呼吸暂停的时间延迟分别为 TV 和 RR 的 8.6±6.7 和 7.0±3.2 秒。

结论:我们已经证明,使用 ECG 衍生的 RR 和 TV 算法可以可靠地检测到呼吸暂停。这些结果支持这样的概念,即我们的算法可用于与 ECG 监测结合检测 SA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c0/6576766/29f7983a6925/pone.0217217.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c0/6576766/ae3ee68c20d4/pone.0217217.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c0/6576766/f055bcaf19e0/pone.0217217.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c0/6576766/522dbdf0ea31/pone.0217217.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c0/6576766/29f7983a6925/pone.0217217.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c0/6576766/ae3ee68c20d4/pone.0217217.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c0/6576766/f055bcaf19e0/pone.0217217.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c0/6576766/522dbdf0ea31/pone.0217217.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c0/6576766/29f7983a6925/pone.0217217.g004.jpg

相似文献

[1]
Utility of a smartphone based system (cvrphone) to accurately determine apneic events from electrocardiographic signals.

PLoS One. 2019-6-17

[2]
A Novel Point-of-Care Smartphone Based System for Monitoring the Cardiac and Respiratory Systems.

Sci Rep. 2017-3-22

[3]
Utility of a Smartphone-Based System (cvrPhone) in Estimating Minute Ventilation from Electrocardiographic Signals.

Telemed J E Health. 2021-12

[4]
An optimized method for estimating the tidal volume from intracardiac or body surface electrocardiographic signals: implications for estimating minute ventilation.

Am J Physiol Heart Circ Physiol. 2014-8-1

[5]
Tidal Volume and Instantaneous Respiration Rate Estimation using a Volumetric Surrogate Signal Acquired via a Smartphone Camera.

IEEE J Biomed Health Inform. 2017-5

[6]
Development of three methods for extracting respiration from the surface ECG: a review.

J Electrocardiol. 2014

[7]
[Methodologic study for measuring oronasal airflow using thermistors].

Pneumologie. 1989-11

[8]
A RR interval based automated apnea detection approach using residual network.

Comput Methods Programs Biomed. 2019-5-8

[9]
Classification of Sleep Apnea Severity by Electrocardiogram Monitoring Using a Novel Wearable Device.

Sensors (Basel). 2020-1-4

[10]
Utility of a Smartphone Based System (cvrPhone) to Predict Short-term Arrhythmia Susceptibility.

Sci Rep. 2019-10-10

引用本文的文献

[1]
Ambulatory monitoring promises equitable personalized healthcare delivery in underrepresented patients.

Eur Heart J Digit Health. 2021-6-28

[2]
Clinical Potential of Beat-to-Beat Diastolic Interval Control in Preventing Cardiac Arrhythmias.

J Am Heart Assoc. 2021-6

[3]
Utility of a Smartphone-Based System (cvrPhone) in Estimating Minute Ventilation from Electrocardiographic Signals.

Telemed J E Health. 2021-12

[4]
Design Implementation and Evaluation of a Mobile Continuous Blood Oxygen Saturation Monitoring System.

Sensors (Basel). 2020-11-18

[5]
Wearable Devices for Ambulatory Cardiac Monitoring: JACC State-of-the-Art Review.

J Am Coll Cardiol. 2020-4-7

本文引用的文献

[1]
Validation of a smartphone-based event recorder for arrhythmia detection.

Pacing Clin Electrophysiol. 2018-5

[2]
Validity and Reliability of the Hexoskin Wearable Biometric Vest During Maximal Aerobic Power Testing in Elite Cyclists.

J Strength Cond Res. 2019-5

[3]
A Novel Point-of-Care Smartphone Based System for Monitoring the Cardiac and Respiratory Systems.

Sci Rep. 2017-3-22

[4]
Derivation of respiration rate from ambulatory ECG and PPG using Ensemble Empirical Mode Decomposition: Comparison and fusion.

Comput Biol Med. 2017-2-1

[5]
Telemedicine Helps Cardiologists Extend Their Reach.

Circulation. 2016-10-18

[6]
Motion Artifact Suppression in Impedance Pneumography Signal for Portable Monitoring of Respiration: An Adaptive Approach.

IEEE J Biomed Health Inform. 2017-3

[7]
Smart-watches: a potential challenger to the implantable loop recorder?

Europace. 2016-2-3

[8]
Validation of the Hexoskin wearable vest during lying, sitting, standing, and walking activities.

Appl Physiol Nutr Metab. 2015-10

[9]
An optimized method for estimating the tidal volume from intracardiac or body surface electrocardiographic signals: implications for estimating minute ventilation.

Am J Physiol Heart Circ Physiol. 2014-8-1

[10]
An optimized method for the estimation of the respiratory rate from electrocardiographic signals: implications for estimating minute ventilation.

Am J Physiol Heart Circ Physiol. 2014-8-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索