Suppr超能文献

利用谷歌地球引擎、开放获取卫星数据和机器学习技术对北方泥炭地进行大规模概率识别。

Large-scale probabilistic identification of boreal peatlands using Google Earth Engine, open-access satellite data, and machine learning.

机构信息

Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, Alberta, Canada.

Department of Geography, University of Calgary, Calgary, Alberta, Canada.

出版信息

PLoS One. 2019 Jun 17;14(6):e0218165. doi: 10.1371/journal.pone.0218165. eCollection 2019.

Abstract

Freely-available satellite data streams and the ability to process these data on cloud-computing platforms such as Google Earth Engine have made frequent, large-scale landcover mapping at high resolution a real possibility. In this paper we apply these technologies, along with machine learning, to the mapping of peatlands-a landcover class that is critical for preserving biodiversity, helping to address climate change impacts, and providing ecosystem services, e.g., carbon storage-in the Boreal Forest Natural Region of Alberta, Canada. We outline a data-driven, scientific framework that: compiles large amounts of Earth observation data sets (radar, optical, and LiDAR); examines the extracted variables for suitability in peatland modelling; optimizes model parameterization; and finally, predicts peatland occurrence across a large boreal area (397, 958 km2) of Alberta at 10 m spatial resolution (equalling 3.9 billion pixels across Alberta). The resulting peatland occurrence model shows an accuracy of 87% and a kappa statistic of 0.57 when compared to our validation data set. Differentiating peatlands from mineral wetlands achieved an accuracy of 69% and kappa statistic of 0.37. This data-driven approach is applicable at large geopolitical scales (e.g., provincial, national) for wetland and landcover inventories that support long-term, responsible resource management.

摘要

免费的卫星数据流和在云计算平台(如 Google Earth Engine)上处理这些数据的能力,使得频繁、大规模地以高分辨率进行土地覆盖制图成为可能。在本文中,我们将这些技术与机器学习相结合,应用于泥炭地制图——这是一个对保护生物多样性、应对气候变化影响和提供生态系统服务(如碳储存)至关重要的土地覆盖类别——在加拿大艾伯塔省的北方森林自然区。我们概述了一个数据驱动的科学框架,该框架:编译大量的地球观测数据集(雷达、光学和激光雷达);检查提取变量在泥炭地建模中的适用性;优化模型参数化;最后,在艾伯塔省的一个大面积北方地区(397,958 平方公里)以 10 米的空间分辨率(在艾伯塔省跨越 39 亿像素)预测泥炭地的发生。与我们的验证数据集相比,生成的泥炭地发生模型的准确率为 87%,kappa 统计量为 0.57。从矿物湿地中区分泥炭地的准确率为 69%,kappa 统计量为 0.37。这种数据驱动的方法适用于大规模的地缘政治尺度(例如,省级、国家级),用于湿地和土地覆盖物清查,以支持长期、负责任的资源管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c53/6576777/ac1b4e4af13a/pone.0218165.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验