Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, Alberta, Canada.
Department of Geography, University of Calgary, Calgary, Alberta, Canada.
PLoS One. 2019 Jun 17;14(6):e0218165. doi: 10.1371/journal.pone.0218165. eCollection 2019.
Freely-available satellite data streams and the ability to process these data on cloud-computing platforms such as Google Earth Engine have made frequent, large-scale landcover mapping at high resolution a real possibility. In this paper we apply these technologies, along with machine learning, to the mapping of peatlands-a landcover class that is critical for preserving biodiversity, helping to address climate change impacts, and providing ecosystem services, e.g., carbon storage-in the Boreal Forest Natural Region of Alberta, Canada. We outline a data-driven, scientific framework that: compiles large amounts of Earth observation data sets (radar, optical, and LiDAR); examines the extracted variables for suitability in peatland modelling; optimizes model parameterization; and finally, predicts peatland occurrence across a large boreal area (397, 958 km2) of Alberta at 10 m spatial resolution (equalling 3.9 billion pixels across Alberta). The resulting peatland occurrence model shows an accuracy of 87% and a kappa statistic of 0.57 when compared to our validation data set. Differentiating peatlands from mineral wetlands achieved an accuracy of 69% and kappa statistic of 0.37. This data-driven approach is applicable at large geopolitical scales (e.g., provincial, national) for wetland and landcover inventories that support long-term, responsible resource management.
免费的卫星数据流和在云计算平台(如 Google Earth Engine)上处理这些数据的能力,使得频繁、大规模地以高分辨率进行土地覆盖制图成为可能。在本文中,我们将这些技术与机器学习相结合,应用于泥炭地制图——这是一个对保护生物多样性、应对气候变化影响和提供生态系统服务(如碳储存)至关重要的土地覆盖类别——在加拿大艾伯塔省的北方森林自然区。我们概述了一个数据驱动的科学框架,该框架:编译大量的地球观测数据集(雷达、光学和激光雷达);检查提取变量在泥炭地建模中的适用性;优化模型参数化;最后,在艾伯塔省的一个大面积北方地区(397,958 平方公里)以 10 米的空间分辨率(在艾伯塔省跨越 39 亿像素)预测泥炭地的发生。与我们的验证数据集相比,生成的泥炭地发生模型的准确率为 87%,kappa 统计量为 0.57。从矿物湿地中区分泥炭地的准确率为 69%,kappa 统计量为 0.37。这种数据驱动的方法适用于大规模的地缘政治尺度(例如,省级、国家级),用于湿地和土地覆盖物清查,以支持长期、负责任的资源管理。