Suppr超能文献

钙钛矿中溶胶-凝胶态的动力学稳定化实现了高效太阳能电池的便捷加工。

Kinetic Stabilization of the Sol-Gel State in Perovskites Enables Facile Processing of High-Efficiency Solar Cells.

作者信息

Wang Kai, Tang Ming-Chun, Dang Hoang X, Munir Rahim, Barrit Dounya, De Bastiani Michele, Aydin Erkan, Smilgies Detlef-M, De Wolf Stefaan, Amassian Aram

机构信息

King Abdullah University of Science and Technology (KAUST), Division of Physical Science and Engineering, and KAUST Solar Center, Thuwal, 23955-6900, Saudi Arabia.

Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA.

出版信息

Adv Mater. 2019 Aug;31(32):e1808357. doi: 10.1002/adma.201808357. Epub 2019 Jun 17.

Abstract

Perovskite solar cells increasingly feature mixed-halide mixed-cation compounds (FA MA Cs PbI Br ) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti-solvent processing window for the fabrication of high-quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI , FAPbI , and FAPbBr ), to several minutes for mixed systems. In situ X-ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol-gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti-solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti-solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol-gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high-efficiency perovskite solar cells produced with ease and with high reproducibility.

摘要

钙钛矿太阳能电池越来越多地采用混合卤化物混合阳离子化合物(FA MA Cs PbI Br )作为光伏吸收剂,因为它们易于加工且稳定性更高。在此,揭示了易于加工的根本原因。研究发现,卤化物和阳离子工程导致用于制造高质量薄膜和高效太阳能电池的反溶剂加工窗口系统性拓宽。对于单阳离子/卤化物体系(例如MAPbI 、FAPbI 和FAPbBr ),这个窗口从几秒拓宽到混合体系的几分钟。原位X射线衍射研究表明,加工窗口与无序溶胶-凝胶的结晶以及结晶副产物的数量密切相关;因此,加工窗口直接取决于精确的阳离子/卤化物组成。此外,通过精心配方,反溶剂滴涂显示出能促进所需的钙钛矿相。由反溶剂滴涂产生高效太阳能电池的最晚时间所定义的钙钛矿太阳能电池加工窗口,随着阳离子/卤化物含量复杂性的增加而拓宽。这种行为归因于通过阳离子/卤化物工程实现的溶胶-凝胶态动力学稳定。这为设计旨在形成钙钛矿相的新配方提供了指导方针,最终实现轻松且高重现性地生产高效钙钛矿太阳能电池。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验