Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL.
Cellworks Research India Pvt. Ltd., Bangalore, India.
Blood Adv. 2019 Jun 25;3(12):1837-1847. doi: 10.1182/bloodadvances.2018028316.
Patients with myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) are generally older and have more comorbidities. Therefore, identifying personalized treatment options for each patient early and accurately is essential. To address this, we developed a computational biology modeling (CBM) and digital drug simulation platform that relies on somatic gene mutations and gene CNVs found in malignant cells of individual patients. Drug treatment simulations based on unique patient-specific disease networks were used to generate treatment predictions. To evaluate the accuracy of the genomics-informed computational platform, we conducted a pilot prospective clinical study (NCT02435550) enrolling confirmed MDS and AML patients. Blinded to the empirically prescribed treatment regimen for each patient, genomic data from 50 evaluable patients were analyzed by CBM to predict patient-specific treatment responses. CBM accurately predicted treatment responses in 55 of 61 (90%) simulations, with 33 of 61 true positives, 22 of 61 true negatives, 3 of 61 false positives, and 3 of 61 false negatives, resulting in a sensitivity of 94%, a specificity of 88%, and an accuracy of 90%. Laboratory validation further confirmed the accuracy of CBM-predicted activated protein networks in 17 of 19 (89%) samples from 11 patients. Somatic mutations in the , , , and genes were discovered to be highly informative of MDS response to hypomethylating agents. In sum, analyses of patient cancer genomics using the CBM platform can be used to predict precision treatment responses in MDS and AML patients.
患有骨髓增生异常综合征(MDS)或急性髓系白血病(AML)的患者通常年龄较大,且合并症较多。因此,早期准确地为每个患者确定个性化的治疗方案至关重要。为了解决这个问题,我们开发了一个基于个体患者恶性细胞中发现的体细胞基因突变和基因 CNV 的计算生物学建模(CBM)和数字药物模拟平台。基于独特的患者特定疾病网络的药物治疗模拟用于生成治疗预测。为了评估基因组信息计算平台的准确性,我们进行了一项前瞻性临床研究(NCT02435550),纳入了确诊的 MDS 和 AML 患者。对 50 名可评估患者的基因组数据进行了 CBM 分析,以预测患者的特异性治疗反应,对每个患者的经验性治疗方案进行了盲法处理。CBM 在 61 次模拟中的 55 次(90%)准确预测了治疗反应,其中 33 次为真阳性,22 次为真阴性,3 次为假阳性,3 次为假阴性,灵敏度为 94%,特异性为 88%,准确率为 90%。实验室验证进一步证实了 CBM 预测的激活蛋白网络在 11 名患者 19 个样本中的 17 个(89%)样本中的准确性。发现 、 、 、和 基因的体细胞突变对 MDS 对低甲基化剂的反应具有高度信息性。总之,使用 CBM 平台分析患者癌症基因组可以用于预测 MDS 和 AML 患者的精准治疗反应。