Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA.
J Bacteriol. 2019 Aug 8;201(17). doi: 10.1128/JB.00011-19. Print 2019 Sep 1.
Bacteria can be motile and planktonic or, alternatively, sessile and participating in the biofilm mode of growth. The transition between these lifestyles can be regulated by a second messenger, cyclic dimeric GMP (c-di-GMP). High intracellular c-di-GMP concentration correlates with biofilm formation and motility inhibition in most bacteria, including , which causes respiratory tract infections in mammals and forms biofilms in infected mice. We previously described the diguanylate cyclase BdcA as involved in c-di-GMP synthesis and motility regulation in ; here, we further describe the mechanism whereby BdcA is able to regulate motility and biofilm formation. Amino acid replacement of GGDEF with GGAAF in BdcA is consistent with the conclusion that diguanylate cyclase activity is necessary for biofilm formation and motility regulation, although we were unable to confirm the stability of the mutant protein. In the absence of the gene, showed enhanced motility, strengthening the hypothesis that BdcA regulates motility in We showed that c-di-GMP-mediated motility inhibition involved regulation of flagellin expression, as high c-di-GMP levels achieved by expressing BdcA significantly reduced the level of flagellin protein. We also demonstrated that protein BB2109 is necessary for BdcA activity, motility inhibition, and biofilm formation. Finally, absence of the gene affected bacterial infection, implicating BdcA-regulated functions as important for bacterium-host interactions. This work supports the role of c-di-GMP in biofilm formation and motility regulation in , as well as its impact on pathogenesis. Pathogenesis of spp., like that of a number of other pathogens, involves biofilm formation. Biofilms increase tolerance to biotic and abiotic factors and are proposed as reservoirs of microbes for transmission to other organs (trachea, lungs) or other hosts. Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is a second messenger that regulates transition between biofilm and planktonic lifestyles. In , high c-di-GMP levels inhibit motility and favor biofilm formation. In the present work, we characterized a diguanylate cyclase, BdcA, which regulates motility and biofilm formation and affects the ability of to colonize the murine respiratory tract. These results provide us with a better understanding of how can infect a host.
细菌可以是能动的和浮游的,或者是不动的,参与生物膜生长模式。这些生活方式之间的转变可以由第二信使环二鸟苷酸(c-di-GMP)调节。在大多数细菌中,细胞内 c-di-GMP 浓度的升高与生物膜形成和运动抑制相关,包括 ,它会导致哺乳动物的呼吸道感染,并在感染的小鼠中形成生物膜。我们之前描述了双鸟苷酸环化酶 BdcA 参与 c-di-GMP 的合成和 运动调节;在这里,我们进一步描述了 BdcA 能够调节运动和生物膜形成的机制。BDCA 中的 GGDEF 被 GGAAF 取代的氨基酸与生物膜形成和运动调节所必需的双鸟苷酸环化酶活性一致,尽管我们无法确认突变蛋白的稳定性。在没有 基因的情况下, 表现出增强的运动性,这加强了 BdcA 调节 运动性的假设。我们表明,c-di-GMP 介导的运动抑制涉及鞭毛蛋白表达的调节,因为通过表达 BdcA 达到的高 c-di-GMP 水平显著降低了鞭毛蛋白的水平。我们还证明了蛋白 BB2109 是 BdcA 活性、运动抑制和生物膜形成所必需的。最后, 基因的缺失影响细菌感染,这暗示了 BdcA 调节的功能对细菌-宿主相互作用很重要。这项工作支持了 c-di-GMP 在 生物膜形成和运动调节中的作用,以及它对发病机制的影响。像许多其他病原体一样, 的发病机制涉及生物膜的形成。生物膜增加了对生物和非生物因素的耐受性,并被提议作为微生物向其他器官(气管、肺部)或其他宿主传播的储库。双(3'-5')-环二鸟苷酸(c-di-GMP)是一种调节生物膜和浮游生活方式之间转变的第二信使。在 中,高 c-di-GMP 水平抑制运动并有利于生物膜形成。在本工作中,我们鉴定了一种 双鸟苷酸环化酶 BdcA,它调节运动和生物膜形成,并影响 定植小鼠呼吸道的能力。这些结果使我们更好地了解 如何感染宿主。