Suppr超能文献

支气管败血波氏杆菌双鸟苷酸环化酶 BdcA 调节运动性并有助于建立小鼠呼吸道感染。

Bordetella bronchiseptica Diguanylate Cyclase BdcA Regulates Motility and Is Important for the Establishment of Respiratory Infection in Mice.

机构信息

Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.

Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA.

出版信息

J Bacteriol. 2019 Aug 8;201(17). doi: 10.1128/JB.00011-19. Print 2019 Sep 1.

Abstract

Bacteria can be motile and planktonic or, alternatively, sessile and participating in the biofilm mode of growth. The transition between these lifestyles can be regulated by a second messenger, cyclic dimeric GMP (c-di-GMP). High intracellular c-di-GMP concentration correlates with biofilm formation and motility inhibition in most bacteria, including , which causes respiratory tract infections in mammals and forms biofilms in infected mice. We previously described the diguanylate cyclase BdcA as involved in c-di-GMP synthesis and motility regulation in ; here, we further describe the mechanism whereby BdcA is able to regulate motility and biofilm formation. Amino acid replacement of GGDEF with GGAAF in BdcA is consistent with the conclusion that diguanylate cyclase activity is necessary for biofilm formation and motility regulation, although we were unable to confirm the stability of the mutant protein. In the absence of the gene, showed enhanced motility, strengthening the hypothesis that BdcA regulates motility in We showed that c-di-GMP-mediated motility inhibition involved regulation of flagellin expression, as high c-di-GMP levels achieved by expressing BdcA significantly reduced the level of flagellin protein. We also demonstrated that protein BB2109 is necessary for BdcA activity, motility inhibition, and biofilm formation. Finally, absence of the gene affected bacterial infection, implicating BdcA-regulated functions as important for bacterium-host interactions. This work supports the role of c-di-GMP in biofilm formation and motility regulation in , as well as its impact on pathogenesis. Pathogenesis of spp., like that of a number of other pathogens, involves biofilm formation. Biofilms increase tolerance to biotic and abiotic factors and are proposed as reservoirs of microbes for transmission to other organs (trachea, lungs) or other hosts. Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is a second messenger that regulates transition between biofilm and planktonic lifestyles. In , high c-di-GMP levels inhibit motility and favor biofilm formation. In the present work, we characterized a diguanylate cyclase, BdcA, which regulates motility and biofilm formation and affects the ability of to colonize the murine respiratory tract. These results provide us with a better understanding of how can infect a host.

摘要

细菌可以是能动的和浮游的,或者是不动的,参与生物膜生长模式。这些生活方式之间的转变可以由第二信使环二鸟苷酸(c-di-GMP)调节。在大多数细菌中,细胞内 c-di-GMP 浓度的升高与生物膜形成和运动抑制相关,包括 ,它会导致哺乳动物的呼吸道感染,并在感染的小鼠中形成生物膜。我们之前描述了双鸟苷酸环化酶 BdcA 参与 c-di-GMP 的合成和 运动调节;在这里,我们进一步描述了 BdcA 能够调节运动和生物膜形成的机制。BDCA 中的 GGDEF 被 GGAAF 取代的氨基酸与生物膜形成和运动调节所必需的双鸟苷酸环化酶活性一致,尽管我们无法确认突变蛋白的稳定性。在没有 基因的情况下, 表现出增强的运动性,这加强了 BdcA 调节 运动性的假设。我们表明,c-di-GMP 介导的运动抑制涉及鞭毛蛋白表达的调节,因为通过表达 BdcA 达到的高 c-di-GMP 水平显著降低了鞭毛蛋白的水平。我们还证明了蛋白 BB2109 是 BdcA 活性、运动抑制和生物膜形成所必需的。最后, 基因的缺失影响细菌感染,这暗示了 BdcA 调节的功能对细菌-宿主相互作用很重要。这项工作支持了 c-di-GMP 在 生物膜形成和运动调节中的作用,以及它对发病机制的影响。像许多其他病原体一样, 的发病机制涉及生物膜的形成。生物膜增加了对生物和非生物因素的耐受性,并被提议作为微生物向其他器官(气管、肺部)或其他宿主传播的储库。双(3'-5')-环二鸟苷酸(c-di-GMP)是一种调节生物膜和浮游生活方式之间转变的第二信使。在 中,高 c-di-GMP 水平抑制运动并有利于生物膜形成。在本工作中,我们鉴定了一种 双鸟苷酸环化酶 BdcA,它调节运动和生物膜形成,并影响 定植小鼠呼吸道的能力。这些结果使我们更好地了解 如何感染宿主。

相似文献

3
Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica.
Microbiology (Reading). 2013 May;159(Pt 5):869-879. doi: 10.1099/mic.0.064345-0. Epub 2013 Mar 8.
4
Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica.
PLoS One. 2016 Jul 5;11(7):e0158752. doi: 10.1371/journal.pone.0158752. eCollection 2016.
7
The Diguanylate Cyclase YfiN of Pseudomonas aeruginosa Regulates Biofilm Maintenance in Response to Peroxide.
J Bacteriol. 2022 Jan 18;204(1):e0039621. doi: 10.1128/JB.00396-21. Epub 2021 Oct 25.
10
Cyclic diguanylate regulation of Bacillus cereus group biofilm formation.
Mol Microbiol. 2016 Aug;101(3):471-94. doi: 10.1111/mmi.13405. Epub 2016 Jun 2.

引用本文的文献

1
Interplay of virulence factors and signaling molecules: albumin and calcium-mediated biofilm regulation in .
J Bacteriol. 2025 Apr 17;207(4):e0044524. doi: 10.1128/jb.00445-24. Epub 2025 Mar 26.
4
Cyclic di-GMP Regulates the Type III Secretion System and Virulence in Bordetella bronchiseptica.
Infect Immun. 2022 Jun 16;90(6):e0010722. doi: 10.1128/iai.00107-22. Epub 2022 May 25.
5
Outer Membrane Vesicles Coating Nano-Glycyrrhizic Acid Confers Protection Against Through Th1/Th2/Th17 Responses.
Int J Nanomedicine. 2022 Feb 11;17:647-663. doi: 10.2147/IJN.S350846. eCollection 2022.

本文引用的文献

2
A Multimodal Strategy Used by a Large c-di-GMP Network.
J Bacteriol. 2018 Mar 26;200(8). doi: 10.1128/JB.00703-17. Print 2018 Apr 15.
3
Cyclic-di-GMP regulation of virulence in bacterial pathogens.
Wiley Interdiscip Rev RNA. 2018 Jan;9(1). doi: 10.1002/wrna.1454. Epub 2017 Oct 8.
4
Cyclic di-GMP: second messenger extraordinaire.
Nat Rev Microbiol. 2017 May;15(5):271-284. doi: 10.1038/nrmicro.2016.190. Epub 2017 Feb 6.
5
The multifaceted RisA regulon of Bordetella pertussis.
Sci Rep. 2016 Sep 13;6:32774. doi: 10.1038/srep32774.
6
Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica.
PLoS One. 2016 Jul 5;11(7):e0158752. doi: 10.1371/journal.pone.0158752. eCollection 2016.
7
Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes.
PLoS Comput Biol. 2016 Apr 6;12(4):e1004862. doi: 10.1371/journal.pcbi.1004862. eCollection 2016 Apr.
8
The Inhibitory Site of a Diguanylate Cyclase Is a Necessary Element for Interaction and Signaling with an Effector Protein.
J Bacteriol. 2016 May 13;198(11):1595-603. doi: 10.1128/JB.00090-16. Print 2016 Jun 1.
10
The Phyre2 web portal for protein modeling, prediction and analysis.
Nat Protoc. 2015 Jun;10(6):845-58. doi: 10.1038/nprot.2015.053. Epub 2015 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验