Suppr超能文献

可调谐自旋物质波阀。

Tunable spinful matter wave valve.

作者信息

Zhao Yan-Jun, Yu Dongyang, Zhuang Lin, Gao Xianlong, Liu Wu-Ming

机构信息

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.

Faculty of Information Technology, School of Microelectronics, Beijing University of Technology, Beijing, 100124, People's Republic of China.

出版信息

Sci Rep. 2019 Jun 17;9(1):8653. doi: 10.1038/s41598-019-44218-y.

Abstract

We investigate the transport problem that a spinful matter wave is incident on a strong localized spin-orbit-coupled Bose-Einstein condensate in optical lattices, where the localization is admitted by atom interaction only existing at one particular site, and the spin-orbit coupling arouse spatial rotation of the spin texture. We find that tuning the spin orientation of the localized Bose-Einstein condensate can lead to spin-nonreciprocal/spin-reciprocal transport, meaning the transport properties are dependent on/independent of the spin orientation of incident waves. In the former case, we obtain the conditions to achieve transparency, beam-splitting, and blockade of the incident wave with a given spin orientation, and furthermore the ones to perfectly isolate incident waves of different spin orientation, while in the latter, we obtain the condition to maximize the conversion of different spin states. The result may be useful to develop a novel spinful matter wave valve that integrates spin switcher, beam-splitter, isolator, and converter. The method can also be applied to other real systems, e.g., realizing perfect isolation of spin states in magnetism, which is otherwise rather difficult.

摘要

我们研究了一个输运问题,即一个具有自旋的物质波入射到光学晶格中强局域化的自旋轨道耦合玻色 - 爱因斯坦凝聚体上,其中局域化仅由存在于一个特定位置的原子相互作用产生,且自旋轨道耦合引起自旋纹理的空间旋转。我们发现,调节局域化玻色 - 爱因斯坦凝聚体的自旋取向可导致自旋非互易/自旋互易输运,这意味着输运性质取决于/不取决于入射波的自旋取向。在前一种情况下,我们得到了对于给定自旋取向的入射波实现透明、分束和阻挡的条件,进而得到了完美隔离不同自旋取向入射波的条件,而在后一种情况下,我们得到了使不同自旋态转换最大化的条件。该结果可能有助于开发一种集成了自旋切换器、分束器、隔离器和转换器的新型自旋物质波阀。该方法也可应用于其他实际系统,例如在磁性中实现自旋态的完美隔离,而这在其他情况下相当困难。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61b1/6572844/c2f36701a143/41598_2019_44218_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验