School of Resources, Environment and Materials , Guangxi University , Nanning 530004 , China.
School of Energy and Chemical Engineering , Xiamen University Malaysia , Selangor Darul Ehsan 43900 , Malaysia.
ACS Appl Mater Interfaces. 2019 Feb 13;11(6):5651-5660. doi: 10.1021/acsami.8b20958. Epub 2019 Jan 7.
Sub-5 nm ultra-fine iron phosphide (FeP) nano-dots-modified porous graphitic carbon nitride (g-CN) heterojunction nanostructures are successfully prepared through the gas-phase phosphorization of FeO/g-CN nanocomposites. The incorporation of zero-dimensional (0D) ultra-small FeP nanodots co-catalysts not only effectively facilitate charge separation but also serve as reaction active sites for hydrogen (H) evolution. Herein, the strongly coupled FeP/g-CN hybrid systems are employed as precious-metal-free photocatalysts for H production under visible-light irradiation. The optimized FeP/g-CN sample displays a maximum H evolution rate of 177.9 μmol h g with the apparent quantum yield of 1.57% at 420 nm. Furthermore, the mechanism of photocatalytic H evolution using 0D/2D FeP/g-CN heterojunction interfaces is systematically corroborated by steady-state photoluminescence (PL), time-resolved PL spectroscopy, and photoelectrochemical results. Additionally, an increased donor density in FeP/g-CN is evidenced from the Mott-Schottky analysis in comparison with that of parent g-CN, signifying the enhancement of electrical conductivity and charge transport owing to the emerging role of FeP. The density functional theory calculations reveal that the FeP/g-CN hybrids could act as a promising catalyst for the H evolution reaction. Overall, this work not only paves a new path in the engineering of monodispersed FeP-decorated g-CN 0D/2D robust nanoarchitectures but also elucidates potential insights for the utilization of noble-metal-free FeP nanodots as remarkable co-catalysts for superior photocatalytic H evolution.
通过 FeO/g-CN 纳米复合材料的气相磷化成功制备了亚 5nm 超精细铁磷化 (FeP) 纳米点修饰的多孔石墨相氮化碳 (g-CN) 异质结纳米结构。零维 (0D) 超小 FeP 纳米点共催化剂的掺入不仅有效地促进了电荷分离,而且还作为氢 (H) 析出的反应活性位点。在此,强耦合的 FeP/g-CN 混合体系被用作可见光照射下 H 生产的无贵金属光催化剂。优化后的 FeP/g-CN 样品在 420nm 时显示出 177.9μmol h g 的最大 H 析出率和 1.57%的表观量子效率。此外,通过稳态光致发光 (PL)、时间分辨 PL 光谱和光电化学结果系统地证实了 0D/2D FeP/g-CN 异质结界面光催化 H 析出的机制。此外,与母体 g-CN 相比,Mott-Schottky 分析表明 FeP/g-CN 中的施主密度增加,这表明由于 FeP 的出现,电导率和电荷输运增强。密度泛函理论计算表明,FeP/g-CN 杂化物可用作 H 析出反应的有前途的催化剂。总的来说,这项工作不仅为单分散 FeP 修饰 g-CN 0D/2D 坚固纳米结构的工程开辟了新途径,而且还为利用无贵金属的 FeP 纳米点作为优异的光催化 H 析出的卓越共催化剂阐明了潜在的见解。