Orr Derek, Ermentrout Bard
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
Phys Rev E. 2019 May;99(5-1):052218. doi: 10.1103/PhysRevE.99.052218.
In this paper, we study pairs of oscillators that are indirectly coupled via active (excitable) cells. We introduce a scalar phase model for coupled oscillators and excitable cells. We first show that one excitable and one oscillatory cell will exhibit phase locking at a variety of m:n patterns. We next introduce a second oscillatory cell and show that the only attractor is synchrony between the oscillators. We will also study the robustness to heterogeneity when the excitable cell fires or is quiescent. We next examine the dynamics when the oscillators are coupled via two excitable cells. In this case, the dynamics are very complicated with many forms of bistability and, in some cases, chaotic behavior. We also apply weak-coupling analysis to this case and explain some of the degeneracies observed in the bifurcation diagram. Further, we look at pairs of oscillators coupled via long chains of excitable cells and show that small differences in the frequency of the oscillators makes their locking more robust. Finally, we demonstrate many of the same phenomena seen in the phase model for a gap-junction coupled system of Morris-Lecar neurons.
在本文中,我们研究了通过活性(可兴奋)细胞间接耦合的振荡器对。我们为耦合振荡器和可兴奋细胞引入了一个标量相位模型。我们首先表明,一个可兴奋细胞和一个振荡细胞将在各种m:n模式下表现出锁相。接下来,我们引入第二个振荡细胞,并表明唯一的吸引子是振荡器之间的同步。我们还将研究当可兴奋细胞放电或静止时,系统对异质性的鲁棒性。接下来,我们研究当振荡器通过两个可兴奋细胞耦合时的动力学。在这种情况下,动力学非常复杂,存在多种双稳态形式,在某些情况下还会出现混沌行为。我们还将弱耦合分析应用于此情况,并解释在分岔图中观察到的一些简并现象。此外,我们研究了通过长链可兴奋细胞耦合的振荡器对,并表明振荡器频率的微小差异会使它们的锁定更加鲁棒。最后,我们展示了在Morris-Lecar神经元的间隙连接耦合系统的相位模型中看到的许多相同现象。