Suppr超能文献

天然产物靶点网络揭示癌症联合疗法的潜力。

Natural Product Target Network Reveals Potential for Cancer Combination Therapies.

作者信息

Chamberlin Steven R, Blucher Aurora, Wu Guanming, Shinto Lynne, Choonoo Gabrielle, Kulesz-Martin Molly, McWeeney Shannon

机构信息

Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Portland, OR, United States.

OHSU Knight Cancer Institute, Portland, OR, United States.

出版信息

Front Pharmacol. 2019 May 31;10:557. doi: 10.3389/fphar.2019.00557. eCollection 2019.

Abstract

A body of research demonstrates examples of and synergy between natural products and anti-neoplastic drugs for some cancers. However, the underlying biological mechanisms are still elusive. To better understand biological entities targeted by natural products and therefore provide rational evidence for future novel combination therapies for cancer treatment, we assess the targetable space of natural products using public domain compound-target information. When considering pathways from the Reactome database targeted by natural products, we found an increase in coverage of 61% (725 pathways), relative to pathways covered by FDA approved cancer drugs collected in the Cancer Targetome, a resource for evidence-based drug-target interactions. Not only is the coverage of pathways targeted by compounds increased when we include natural products, but coverage of targets within those pathways is also increased. Furthermore, we examined the distribution of cancer driver genes across pathways to assess relevance of natural products to critical cancer therapeutic space. We found 24 pathways enriched for cancer drivers that had no available cancer drug interactions at a potentially clinically relevant binding affinity threshold of < 100nM that had at least one natural product interaction at that same binding threshold. Assessment of network context highlighted the fact that natural products show target family groupings both distinct from and in common with cancer drugs, strengthening the complementary potential for natural products in the cancer therapeutic space. In conclusion, our study provides a foundation for developing novel cancer treatment with the combination of drugs and natural products.

摘要

一系列研究表明,对于某些癌症,天然产物与抗肿瘤药物之间存在协同作用的实例。然而,其潜在的生物学机制仍不清楚。为了更好地了解天然产物所靶向的生物实体,从而为未来新型癌症联合治疗提供合理依据,我们利用公共领域的化合物-靶点信息评估天然产物的可靶向空间。在考虑天然产物靶向的Reactome数据库中的通路时,我们发现,相对于《癌症靶点组》(一个基于证据的药物-靶点相互作用资源库)中收集的FDA批准的癌症药物所覆盖的通路,天然产物所覆盖的通路增加了61%(725条通路)。当我们纳入天然产物时,不仅化合物靶向的通路覆盖范围增加了,而且这些通路内靶点的覆盖范围也增加了。此外,我们研究了癌症驱动基因在各通路中的分布,以评估天然产物与关键癌症治疗空间的相关性。我们发现,在潜在临床相关结合亲和力阈值<100nM时,有24条富含癌症驱动基因的通路没有可用的癌症药物相互作用,但在相同结合阈值下至少有一个天然产物相互作用。对网络背景的评估突出了这样一个事实,即天然产物显示出与癌症药物不同但又有共同之处的靶点家族分组,增强了天然产物在癌症治疗空间中的互补潜力。总之,我们的研究为开发药物与天然产物联合的新型癌症治疗方法奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9c4/6555193/8d7985ae002c/fphar-10-00557-g0001.jpg

相似文献

1
Natural Product Target Network Reveals Potential for Cancer Combination Therapies.
Front Pharmacol. 2019 May 31;10:557. doi: 10.3389/fphar.2019.00557. eCollection 2019.
2
Visualization of drug target interactions in the contexts of pathways and networks with ReactomeFIViz.
F1000Res. 2019 Jun 20;8:908. doi: 10.12688/f1000research.19592.1. eCollection 2019.
5
Exploiting protein family and protein network data to identify novel drug targets for bladder cancer.
Oncotarget. 2022 Jan 12;13:105-117. doi: 10.18632/oncotarget.28175. eCollection 2022.
6
Natural products used as a chemical library for protein-protein interaction targeted drug discovery.
J Mol Graph Model. 2018 Jan;79:46-58. doi: 10.1016/j.jmgm.2017.10.015. Epub 2017 Oct 27.
9
Natural products against acute respiratory infections: Strategies and lessons learned.
J Ethnopharmacol. 2020 Feb 10;248:112298. doi: 10.1016/j.jep.2019.112298. Epub 2019 Oct 11.
10
Marine natural products for multi-targeted cancer treatment: A future insight.
Biomed Pharmacother. 2018 Sep;105:233-245. doi: 10.1016/j.biopha.2018.05.142. Epub 2018 May 30.

引用本文的文献

5
Revisiting the antioxidant-prooxidant conundrum in cancer research.
Med Oncol. 2024 Jun 19;41(7):179. doi: 10.1007/s12032-024-02386-6.
6
Zingiber officinale promotes autophagy and apoptosis in human oral cancer through the C/EBP homologous protein.
Cancer Sci. 2024 Aug;115(8):2701-2717. doi: 10.1111/cas.16248. Epub 2024 Jun 18.
8
Review of Predicting Synergistic Drug Combinations.
Life (Basel). 2023 Sep 7;13(9):1878. doi: 10.3390/life13091878.
9
Anticancer and antimicrobial evaluation of extract from brown algae Hormophysa cuneiformis.
J Appl Biomed. 2023 Sep;21(3):121-136. doi: 10.32725/jab.2023.016. Epub 2023 Sep 22.
10
Combination Therapy as a Promising Way to Fight Oral Cancer.
Pharmaceutics. 2023 Jun 4;15(6):1653. doi: 10.3390/pharmaceutics15061653.

本文引用的文献

1
Sensitization of renal carcinoma cells to TRAIL-induced apoptosis by rocaglamide and analogs.
Sci Rep. 2018 Nov 30;8(1):17519. doi: 10.1038/s41598-018-35908-0.
2
Rocaglamide enhances NK cell-mediated killing of non-small cell lung cancer cells by inhibiting autophagy.
Autophagy. 2018;14(10):1831-1844. doi: 10.1080/15548627.2018.1489946. Epub 2018 Aug 17.
3
Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations.
Genome Med. 2018 Mar 28;10(1):25. doi: 10.1186/s13073-018-0531-8.
6
Overcoming Resistance to Cetuximab with Honokiol, A Small-Molecule Polyphenol.
Mol Cancer Ther. 2018 Jan;17(1):204-214. doi: 10.1158/1535-7163.MCT-17-0384. Epub 2017 Oct 20.
7
Evidence-Based Precision Oncology with the Cancer Targetome.
Trends Pharmacol Sci. 2017 Dec;38(12):1085-1099. doi: 10.1016/j.tips.2017.08.006. Epub 2017 Sep 27.
8
Rocaglamide breaks TRAIL-resistance in human multiple myeloma and acute T-cell leukemia in vivo in a mouse xenogtraft model.
Cancer Lett. 2017 Mar 28;389:70-77. doi: 10.1016/j.canlet.2016.12.010. Epub 2016 Dec 18.
9
Quantification of Pathway Cross-talk Reveals Novel Synergistic Drug Combinations for Breast Cancer.
Cancer Res. 2017 Jan 15;77(2):459-469. doi: 10.1158/0008-5472.CAN-16-0097. Epub 2016 Nov 22.
10
Phytomedicine-Modulating oxidative stress and the tumor microenvironment for cancer therapy.
Pharmacol Res. 2016 Dec;114:128-143. doi: 10.1016/j.phrs.2016.10.022. Epub 2016 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验