Department of Radiology - Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
J Neural Eng. 2019 Aug 6;16(5):056010. doi: 10.1088/1741-2552/ab2b21.
Simultaneous electroencephalography and functional magnetic resonance imaging recording (EEG-fMRI) has been widely used in neuroscientific and clinical research. The artifacts in the recorded EEG resulting from rapidly switching magnetic field gradients are usually corrected by average-artifact subtraction (AAS) due to their repetitive nature. But the performance of AAS is often disrupted by altered artifact waveforms across epochs, notably due to head motion.
Here, a method is proposed to make use of the known MR sequence gradient waveforms for a direct modelling of gradient artifacts. After accounting for filtering effects on the gradient artifacts, a continuous modulation of the gradient waveforms superimposed on the EEG signal is obtained.
Although a moving AAS template can adjust to slow drifts in gradient artifact variation, it fails to adapt to abrupt motion, resulting in residual noise. We demonstrate how this modelling approach can reduce motion-affected gradient artifacts without distorting the underlying neuronal signals. Moreover, the method provides useful head motion information highly correlated with motion tracked by an optical camera.
Our work provides a novel way to improve gradient artifact removal in EEG-fMRI, and shows a potential to detect head motion without requiring additional hardware.
脑电图与功能磁共振成像同步记录(EEG-fMRI)已广泛应用于神经科学和临床研究。由于磁场梯度快速切换产生的伪影具有重复性,通常采用平均伪影减除(AAS)对记录的 EEG 中的伪影进行校正。但由于头部运动等原因,AAS 的性能经常受到各时期伪影波形变化的干扰。
本研究提出了一种利用已知的磁共振序列梯度波形对梯度伪影进行直接建模的方法。在考虑梯度伪影滤波效应的基础上,对叠加在 EEG 信号上的梯度波形进行连续调制。
虽然移动 AAS 模板可以适应梯度伪影变化的缓慢漂移,但它无法适应突然的运动,导致残留噪声。我们展示了如何通过这种建模方法在不改变潜在神经元信号的情况下减少受运动影响的梯度伪影。此外,该方法还提供了与光学相机跟踪的运动高度相关的有用头部运动信息。
我们的工作为改进 EEG-fMRI 中的梯度伪影去除提供了一种新方法,并展示了一种无需额外硬件即可检测头部运动的潜力。